

SNAP-PYRATE

Copyright 2021 SkyWatch Space Applications Inc. https://skywatch.com
 http://step.esa.int

Command line InSAR tutorial

 Issued January 2022

Alex McVittie

Introduction

PyRate is an open source toolkit to estimate velocity of surface movement in unwrapped phase
interferograms using SBAS processing. It is developed by Geoscience Australia. The source code and
setup instructions can be found here: https://github.com/GeoscienceAustralia/PyRate. As of the SNAP
8.0 public release, an additional GAMMA export of SNAP has been added to allow for SNAP to export
interferograms in a format that can be read in by PyRate. This tutorial will demonstrate how to generate
an interferogram of Mexico City, which is consistently sinking, using Sentinel-1 radar imagery and
export to PyRate for further surface velocity analysis.

This tutorial assumes that you are running SNAP 9.0, have PyRate installed and set up and have snaphu
configured. Snaphu can be installed on Debian-based Linux systems by running
sudo apt install snaphu, or by downloading the source code from
https://web.stanford.edu/group/radar/softwareandlinks/sw/snaphu/ and compiling manually.

PyRate uses a large amount of memory. It is highly recommended to have 64gb+ of memory available
to avoid out of memory errors. While your machine may not have this amount of RAM installed, you
can get around this by providing swap space on Linux or MacOS, or increase the page file size in
Windows.

All commands in this font preceded by a $ to be interpreted as command-line instructions run on

the BASH shell. A basic understanding of using BASH is recommended for this tutorial.

Study area
This tutorial focuses on analyzing the ground movement of Mexico City, which is sinking due to
groundwater aquifer depletion. You can read more about this issue in this article published by The
Guardian.

Data sets
Nine S1 SLC swath datasets are selected for this tutorial from 2016 to generate a set of eight
coregistered interferograms. These can be downloaded from sentinel hub. While PyRate can run on a
minimum of two interferograms, this is not a good representation of SBAS processing.

S1A_IW_SLC__1SSV_20160808T004001_20160808T004028_012502_0138EA_8537
S1A_IW_SLC__1SSV_20160901T004002_20160901T004029_012852_01449E_DC9B
S1A_IW_SLC__1SSV_20160913T004007_20160913T004031_013027_014A32_33CE
S1A_IW_SLC__1SDV_20160925T004003_20160925T004030_013202_01500A_C461
S1A_IW_SLC__1SDV_20161019T004003_20161019T004030_013552_015B1A_AD25
S1A_IW_SLC__1SSV_20161031T004007_20161031T004032_013727_016071_389C
S1A_IW_SLC__1SDV_20161112T004003_20161112T004030_013902_016605_5C70
S1A_IW_SLC__1SDV_20161206T004002_20161206T004029_014252_0170CD_AE2F
S1A_IW_SLC__1SSV_20161218T004006_20161218T004031_014427_017650_F25C

https://github.com/GeoscienceAustralia/PyRate
https://www.theguardian.com/science/2004/may/06/thisweekssciencequestions
https://www.theguardian.com/science/2004/may/06/thisweekssciencequestions
https://web.stanford.edu/group/radar/softwareandlinks/sw/snaphu/

For this tutorial, it is recommended to download these files using the ASF Vertex portal. You can bulk-
download a set of selected products using their auto-generated Python download script.

Visualization of all 9 products opened in SNAP, showing the overlay.

All the processing in SNAP will be done via the gpt command-line interface. For a full tutorial on this,
please follow the SNAP Command line tutorial available online.

Let’s begin our processing chain by getting the swath that we need, and correcting the orbit of all 9
products. Mexico City is located within the IW1 swath of all the images. The easiest way to generate an
XML processing graph is to use SNAP desktop to create it in the graph builder. Your graph will look
like this:

Save this and open it in your preferred text editor. We’re going to want to replace a few things so that
within a command-line interface, we can run this in batch on all of our products.

The first <operator> tag should be the Read operator. We’re going to want to go to the <parameters >
section and modify the <file> path provided to be a variable.
We’re going to set this to be ${inputFile}.

The second modification we’re going to want to do is to modify our Write operator <file> parameter to
be a variable as well. We’re going to replace that file path to be ${outputFile}.

In Linux, looping through files is fairly straightforward using the BASH shell. Navigate to the folder
with your products, and we will construct the following bash loop:

$ mkdir iw1; for f in *.zip; do gpt myGraph.xml -PinputFile=$f -PoutputFile=”iw1/$f”; done

This will loop through and apply the graph processing to all the products in our data folder, and output
the orbit corrected, IW1 swath images into our folder titled iw1.

The next thing we’ll need to do is to construct a second graph XML file that is going to create our co-
registered stack, and use a new operator in SNAP 8 to create a stack containing multiple master/slave
pairs.

We’ll create the following graph, populating the ProductSet-Reader operator with all the products just
generated within the iw1 folder, and modifying the sliders within the MultiMasterInSAR (Referred to
in the GUI as Multi Reference InSAR) operator to increase the number of pairs in our interferogram
stack. After the MultiMasterInSAR operator, we must then run a TOPSAR-Deburst to remove burst
lines from our Sentinel-1 interferograms.

http://step.esa.int/docs/tutorials/SNAP_CommandLine_Tutorial.pdf

Let’s save this XML graph as pyratePrepMMIFG.xml. We can now run it on the command line as
pyratePrepMMIFG.xml and then execute it as such:

$ gpt pyratePrepMMIFG.xml

The resulting product will be a debursted multi-master InSAR interferogram stack. At this point, it is
recommended that you subset the stack. This can be done either with a new graph, or adding a Subset
operator after TOPSAR Deburst before writing in the pyratePrepMMIFG.xml graph.

Some of the bands that will be in your unwrapped band stack.

With our now subsetted and debursted InSAR stack, we have wrapped phase bands. PyRate requires
unwrapped phase, so we must use snaphu to unwrap. This is a freely available tool on Linux, available
either via compiling from source, or in some package managers. In Ubuntu, it is available through the
command

$ sudo apt install snaphu

Let’s create a new graph as follows:

The manual for snaphu goes over the parameters for phase band unwrapping in more detail, but the
defaults that SNAP presents you with will adequately unwrap your bands. The only things you may
wish to alter to tailor to your system is the number of processors – if you are running on a machine wit
an 8 core CPU, you may wish to bump that number up from the default of 4, to 6 or 7, leaving one core
free if you are planning on using the machine while it processes your data. If you are on a less powerful
machine with not many cores, consider dropping this number down to 2 or 3.

Add a target folder for where you wish to save your snaphu configuration files and inputs to the snaphu
tool, and save the graph as snaphuExport.xml.

You can then run the graph using
$ gpt snaphuExport.xml

and the folder you targeted will populate with a number of files. A recent update to SNAP allows the
snaphu export tool to handle stacks with multiple phase bands, creating multiple snaphu configuration
input files. These files end in snaphu.conf preceded by the phase band name as identification.

If you open one of these snaphu.conf files, you will see the following information:

The line we want to be able to extract from this is line 7. Since this is a Linux utility, we can simply use
some bash and regex to extract this line and run from the command line.

First, let’s use awk to get the line, including that pound sign and padding:

$ awk '{if(NR==7) print $0}' Phase_ifg_12Nov2016_06Dec2016snaphu.conf

This will return the following:

snaphu -f Phase_ifg_12Nov2016_06Dec2016snaphu.conf
Phase_ifg_12Nov2016_06Dec2016.snaphu.img 1775

To remove the first 8 characters, we can pipe that text into the UNIX cut utility as such:

$ awk '{if(NR==7) print $0}' Phase_ifg_12Nov2016_06Dec2016snaphu.conf | cut -c9-100000000

This will now return the following:

snaphu -f Phase_ifg_12Nov2016_06Dec2016snaphu.conf Phase_ifg_12Nov2016_06Dec2016.snaphu.img
1775

Instead of just printing this out to the console, we should be writing it to a bash file that can be
executed after. This can be done easily as follows:

$ awk '{if(NR==7) print $0}' Phase_ifg_12Nov2016_06Dec2016snaphu.conf | cut -c9-100000000 >> run.sh

We can now use a bash loop to loop over this and get all the commands as such into one runnable file:

$ for a in *snaphu.conf; do awk '{if(NR==7) print $0}' $a | cut -c9-10000000 >> run.sh; done

Simply make this script executable with chmod and then you can unwrap all the header bands in one
go.

$ chmod 700 run.sh; ./run.sh

With all the phase bands unwrapped now, it is time to import them back into your product.

Create a new graph as follows:

Set the Read operator to be the wrapped interferogram stack (created from pyratePrepMMIFG.xml or
from a subsequent subset graph). Be sure that the “Do not save wrapped interferogram” checkbox
remains unchecked in SnaphuImport.

Save this graph as snaphuImport.xml and open this up in a text editor. Replace the file path in the file
tag for the Read(2) operator to be ${unwImg}. Replace the file path in the file tag for the Read operator
to be ${stack}. Replace the file path in the file tag for the Write operator to be ${outFile}. Save this
file, and now from the command line, we can start programatically adding our unwrapped phase bands
to our product like so:

$ gpt snaphuImport.xml -PunwImg=data/snaphu/UnwPhase_ifg_12Nov2016_06Dec2016.snaphu.img
-Pstack=data/stack/subset_0_of_S1A_IW_SLC__1SDV_20161112T004003_20161112T004030_013902_016605_5C70.dim
-PoutFile=data/stack/s
data/stack/subset_0_of_S1A_IW_SLC__1SDV_20161112T004003_20161112T004030_013902_016605_5C70.dim

We can then run this as an iterative loop, as we did earlier in this tutorial.

$ export stackProduct=’
data/stack/subset_0_of_S1A_IW_SLC__1SDV_20161112T004003_20161112T004030_013902_016605_5C70.d

im’

$ for a in UnwPhase_ifg*; do gpt snaphuImport.xmp -PunwImg=$a -Pstack=$stackProduct -
PoutFile=$stackProduct; done

After running this script, you will have all unwrapped phase bands added to your stack product.

For the final step, we must export this stack into the Gamma for PyRate format. Simply create a read-
write graph and specify Gamma for PyRate as an output format, and choose a folder for the data to go.

Configuring PyRate
Now that we have our data prepared for InSAR processing with PyRate, we must first set up some of
the input parameters that PyRate needs in order to process our interferograms. PyRate provides sample
configuration files in its github repository
https://raw.githubusercontent.com/GeoscienceAustralia/PyRate/master/input_parameters.conf .

We will take the one provided and modify it to suit our needs.

First, PyRate requires a file containing all paths of .rslc raw image files. It should look similar to this
small portion:

/home/alex/WORK/data/InSAR/ifgs_pyrate/gamma/
Unw_Phase_ifg_IW1_VV_13Sep2016_25Sep2016_20160913-20160925.rslc

/home/alex/WORK/data/InSAR/ifgs_pyrate/gamma/
Unw_Phase_ifg_IW1_VV_25Sep2016_19Oct2016_20160925-20161019.rslc

/home/alex/WORK/data/InSAR/ifgs_pyrate/gamma/
Unw_Phase_ifg_IW1_VV_19Oct2016_31Oct2016_20161019-20161031.rslc

Save this as a plaintext file and provide it as path for the ifgfilelist argument. Be sure to have the files
in chronological order in the text document.

Additionally, create a plaintext file that contains a list of your coherence files (coh_ files) in
chronological order, and provide that as a path for the cohfilelist parameter.

Set obsdir, and slcFileDir to be the same location (eg.
/home/alex/WORK/data/InSAR/ifgs_pyrate/gamma)

demHeaderFile and demfile to be pointing to the location of the .rslc.par and .rslc files respectively of
your elevation file you generated, and outdir to be where you want PyRate to store the output and
intermediate files.

Be sure to set the nsig argument near the bottom of the file to be less than the number of interferograms
you have. If you have 10 interferograms, set it to be 7 or 8.

You will want to set parallel to be 1 and processes as many cores as you can give to PyRate to decrease
processing time when possible (e.g. with an 8 core cpu you would want to give 6 cores to PyRate).

Set ifgxfirst, ifgxlast, ifyfirst, ifylast to be the bounds of the image. For this area, a successful run has

been:

ifgxfirst: -99.0927229

ifgxlast: -98.9016766

ifgyfirst: 19.5561865

ifgylast: 19.3623714

https://raw.githubusercontent.com/GeoscienceAustralia/PyRate/master/input_parameters.conf

Set maxsig to be slightly higher at 5 to allow for not rejecting slight standard deviations.

With this all set up, we can now run PyRate on our input datasets. Pyrate, as of version 0.6.0 (latest

version at the time of writing this tutorial) is run with the four commands:

pyrate conv2tif -f input_parameters.conf

pyrate prepifg -f input_parameters.conf

pyrate correct -f input_parameters.conf

pyrate merge -f input_parameters.conf

More information about the PyRate workflow can be found on

https://geoscienceaustralia.github.io/PyRate/

	Introduction
	Study area

	Data sets
	Configuring PyRate

