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Scope 

The overall aim of the GLaSS project is the setting up of a system that is able to handle large 
quantities of Sentinel data. This report is about the development of an optical pre-
classification algorithm for main water-types. This was deemed necessary because inversion 
algorithms often have a limited range of values – of basically total inherent optical properties 
(IOPs), a and b – for which they perform optimally. Because of the actual, extreme variability 
in range of spectral absorption (a) and scattering (b) between and within global lakes, 
satellite borne optical sensors capture the distinctly different colours. We decided to classify 
these spectra with a spectral classification method (Moore et al., 2014), because satellite 
sensors collect these apparent optical properties (AOPs) for all (global) lakes. 
To distinguish the main water-types, we first collected atmospherically corrected satellite 
reflectances and radiances (also from Task 3.2). In addition, clustering of  the collected in situ 
spectra resulted in three classification schemes that generate different lake water classes. 
Thus we could identify and map water types with distinctly different reflectances and total 
Inherent Optical Properties (IOPs). Given the limited information about the contribution of 
individual constituents, we refrain from labelling of these water types further. This is where 
the actual classification with retrieval algorithms (Task 3.4) comes in. 

The purpose of Task 3.3 is to develop a method that facilitates to pre-select which 
atmospheric correction and water quality retrieval algorithm could be used for which lake. 
The OWT pre-classification tool, which was implemented in BEAM, maps the water type of 
the class spectrum that matches the remotely sensed spectrum best. It has been tested for 
GLaSS nearby lakes, which are those lakes that have been studied by individual GLaSS 
partners for long time, and for which we have additional in situ data. This resulted in a 
protocol, or processing line that can also be applied or adapted for ENVISAT heritage 
Sentinel-3 OLCI data sets. 

Environmental conditions can cause optics to be variable, and this variability could be used 
as indicator for validation of biogeochemical and hydrological models, such as the HYPE 
(GEOLAND-2) model (Task 4.3). The spectral classification method is also being taken up by 
Task 3.6, data mining, and is being considered for the development of case studies WP5. 
BEAM now features several GLaSS OWT processors for further exploration by GLaSS 
partners, and we also provide handles (description of method, processing line) to these 
Tasks and WP. 
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Abstract 

Shallow and deep lakes receive and recycle organic and inorganic substances from within 
the confines of the lakes proper, the watershed and beyond. Hence, the huge ranges in 
absorption and scattering, and the extreme optical variability between and within global 
lakes. Inversion algorithms use the observed spectral variability for retrieving IOPs and 
concentrations of individual optically active substances. However, the large ranges and 
extreme variability are a challenge for (parameterization of) the currently available 
atmospheric correction and/or in-water retrieval algorithms. We aimed to develop a method 
and protocols that help optical water quality professionals selecting (from a set of existing) 
atmospheric correction algorithms and in-water retrieval algorithms by means of a pre-
classification.  

We have been adapting a spectrally-based optical pre-classification scheme (Moore et al., 
2014, RS Env. 113) for global lakes, by calculating clusters from in situ spectra collected by 
partners and advisors of the EU-GLaSS project. We also have access to a large set of 
MERIS data, atmospheric correction tools and dedicated lake water quality retrieval 
algorithms. The tool maps the water type of the class spectrum that matches the remotely 
sensed spectrum best, and has been integrated in BEAM. It has been tested for GLaSS 
nearby lakes, which are those lakes that have been studied by individual GLaSS partners for 
long time, and for which we have additional in situ data. This resulted in a protocol, or 
processing line that can also be applied or adapted for ENVISAT heritage Sentinel-3 OLCI 
data sets. 

We also anticipate that these maps and protocols for nearby lakes will suggest similar 
settings for lakes of comparable biophysical types (the GLaSS use cases). Once these 
settings are verified and robust we can apply them to the huge majority lakes for which we 
only have the satellite spectra. We are aware that local specific IOPs (sIOPs) can be 
different, and that this should only be used as a first indication of a potentially good 
atmospheric correction (AC) and water quality (WQ) retrieval approach, or as a best guess in 
case these sIOPs are not known. 
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1 Introduction 

 

The upcoming ESA satellites Sentinel-2 and Sentinel-3 will provide unprecedented monitoring 
capabilities of Earth surfaces thanks to the high overpass frequency of S-3 and the high spatial 
resolution of S-2. However, the large data volumes also require new methods to turn data into 
useful information for end-users. Within the GLaSS project, these issues are tackled, and a 
prototype infrastructure targeted specifically at lakes is set up.  

The Algorithm and methods development work package, WP3 (Fig. 1) contains Task 3.3, which 
aims at the design of an optical pre-classification algorithm that can distinguish the main water-
types and facilitate selection of water quality (WQ) algorithms. After exploring the topic of optical 
pre-classification, the fuzzy Optical Water Type processor (Moore et al., 2014) is introduced and 
applied. One of the additional innovative uses of this processor is testing the impact of different 
atmospheric corrections (GLaSS WP 3.2, the ‘feedback loop’ in Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Task 3.3 Optical pre-classification, within the WP3 Algorithm and methods development 
workflow. 
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1.1 Why do we need an optical pre-classification of lakes? 

AOPs and IOPs 
Our common theoretical framework regarding the behaviour of in-water light is that it is defined by 
the main inherent optical properties (IOPs, absorption, scattering, and the scattering phase 
function) and apparent optical properties (AOPs, such as irradiance, radiance, and reflectance). 
Total IOPs of surface waters depend on absorption and scattering of the pure water and by major 
optically active constituents that reside dissolved and suspended in the water column. Apparent 
Optical Properties (AOPs) are those optical properties that are influenced by the angular 
distribution of the light field, as well as by the IOPs. For known angular distributions of the incoming 
light, radiative transfer models can link AOPs such as remote sensing reflectance to total IOPs. 
Decomposition into concentrations of optically active substances such as chlorophyll-a (CHL), total 
suspended matter (TSM), coloured dissolved organic matter (CDOM), and occasionally 
phycocyanin (PC), requires additional information about concentration-specific inherent optical 
properties (sIOPs). Retrieval algorithms unravel non-linear, spectrally-varying interactions among 
remotely-sensed signals, sIOPs and concentrations.  
 
Challenges for retrieval algorithms 
The retrieval is challenging (Fig.2), and there might be several reasons why we need optical pre-
classification. First of all, the changes in signal with changes in the sIOPs or concentrations of the 
individual constituents are often very small compared to changes brought about by atmospheric 
optically active substances, making it difficult to guarantee the quality and reliability of the extracted 
in-water concentrations. Also, at many wavelengths, two or more substances may influence the 
optical signal in a similar manner, making it difficult to distinguish one material from another. Then, 
remotely-sensed observations are often inverted for widely varying conditions (Blondeau-Patissier 
et al., 2009), and the assumption that requisite transfer function and sIOPs are constant in time 
and for all pixels might not hold. Finally, each individual satellite sensor band has its own sensitivity 
and saturation characteristics, while together they encompass a large dynamic range so that they 
cover dark as well as bright signals. All these effects cause algorithms to have a range of values 
(viz., total IOPs) for which they perform optimally (D’ Alimonte et al., 2003; Odermatt et al., 2012). 
To resolve this, these algorithms have switches incorporated, such as Case-2 adaptations of the 
standard OC3 algorithm (Gohin et al., 2002 and O’Reilly et al, 1998 respectively), or use many 
wavelengths (Doerffer and Schiller, 2007; Schroeder et al., 2007; Van der Woerd and Pasterkamp, 
2008). Nonetheless, application of a semi-analytical, or spectral matching algorithm parameterised 
with adaptable sIOPs implies a physically sound procedure and has been giving good results 
(Brando et al., 2012; Tilstone et al., 2012, Heege et al. 2014). In fact, these spectral matching 
algorithms – e.g. Van der Woerd and Pasterkamp, 2007, and c-distort by Stamnes (Stamnes et al., 
1988; Jin and Stamnes, 1994; Stamnes et al., 2000; Gjerstad et al., 2003) – work if the bio-optical 
model is well-constrained (sIOPs are set) and the necessary bands are included. For inland 
waters, appropriate adjacency correction procedures are usually necessary (Kiselev et al. 2014). 
For the detection of phytoplankton in case-2 waters, MERIS bands 7 and 9 are required to capture 
chlorophyll-a absorption at 676 nm with respect to a minimum in the combined absorption by 
phytoplankton pigments and water at 705 nm (Gons et al, 2005; Gurlin et al., 2011). However, full 
sIOP sets are rare, particularly if accessory pigments such as phycoerythrin (PE) and phycocyanin 
(PC) are also of interest, and therefore such algorithms are not yet commonly applied, and might 
need further validation (Brando et al., 2012; Odermatt et al., 2012).  
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Figure 2. Algorithm validation ranges for different optical conditions (Odermatt et al., 2012, Fig. 4) 

 
Pre-classification for lake waters 
Hence, there might be several reasons why an optical pre-classification might be of interest, for 
lakes in particular. An optical pre-classification enables identifying areas with common bio-optical 
properties.  

Biomass and pigment concentrations can be high in lakes, and there are also extremely humic 
(CDOM) and mineral (SPM dominated, glacial) lakes. Thus concentrations of several 
independently varying optically active substances and their IOPs can vary significantly within lakes 
and between lakes. The concentration-normalised sIOPs have a more narrow dynamic range, but 
can still contain extremes, particularly for “special conditions”, such as dominance by 
cyanobacteria, and mine tailing ponds. Retrieval of concentrations with empirical algorithms 
without switches will simply fail (or give erroneous results) as soon as one of the concentrations, or 
sIOPs from the optically active constituents changes. 

Dekker et al. (1995), Durand et al. (1999), and Lindell et al. (1999) have shown that the empirical 
approach to remote sensing of (TSM) in inland waters cannot produce multi-temporal quantitative 
maps, nor does it allow retrospective analysis. They recommend forward and inverse modelling 
between the remotely sensed signal and the water constituents, via the specific inherent optical 
properties (Dekker et al., 2002.). The previously mentioned state-of-the-art spectral matching 
methods that incorporate this approach are currently mainly retrieving the three main constituents 
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(CHL, TSM, CDOM) at once from remote sensing reflecance. Only limited research has been done 
on incorporation of additional absorption of PC (or PE) and scattering of cyanobacteria. 

In our nearby and long list of global lakes (Eleveld et al., 2014), we will use a measure that is 
available for all lakes, remote sensing reflectances of global lakes (at all optical and the first NIR 
bands of respective sensor) for spectral pre-classification of inland waters (Moore et al., 2014). In 
this case, the spectral matching is aimed primarily at indicating the most appropriate atmospheric 
correction and retrieval algorithm. 

 

1.2 Lake classification systems 

Classifiers addressing the heterogeneous nature of lakes 

We use classification systems to assess the state of the environment at any point in time. In 
general, classification systems address the heterogeneous nature of lakes. Some of the most 
important characteristics include the lake’s morphometry (size, shape and depth), the activities that 
occur in the lands that drain into it (watershed or basin), the location or ecoregion in which the lake 
is located, and when and how the lake basin was formed. Lakes and rivers within ecoregions often 
have similar physical characteristics, water chemistry, and biological communities, because they 
occur in an area of similar land type. The number, appearance, and condition of lakes vary among 
ecoregions because of glacial history, geology, soil type, land use, and climate. A lake is also a 
reflection of its watershed: what happens on the land and the basic characteristics of the land (soil, 
geology, vegetation, drainage, etc.) affects the quality and health of a lake. These factors, acting in 
various combinations, have created the multitude of lake types, with different trophic state and use 
(Eleveld et al., 2014). Trophic state is related to CHL (Odermatt et al., 2012) and has a link to 
transparency (e.g. Carlson, 1977). Thus, the classification can be based on descriptors of lake 
ecosystems (morphometry, hydrodynamics, and trophic state), its environment (hydrology and land 
use in the watershed, ecoregions, geology), use, and optics. Trophic thresholds may vary with 
ecosystem-specific limitations to primary productivity, while the validity of remote sensing 
algorithms is determined by the spatio-temporal variability in optical properties.  

Similarly, the ocean colour community has been perceiving the oceans as biogeochemical 
provinces (Longhurst, 1995, 1998, 2006; IOCCG, 2009) based on physical circulation patterns 
(forcings), availability of light and nutrients (distance from continental masses), complexity of the 
marine food web, and common bio-optical properties. Recently, Lee and Hu (2006), Mélin et al. 
(2011) realized that in practice, the only feasible means to map case-1 versus case-2 waters is to 
devise an inclusive remote-sensing criterion using remote sensing reflectances from ocean color 
satellite sensors and bio-optical models from extensive measurements. 
 
Historic ‘optical’ water type classification systems 
If the emphasis of the classification is on identifying areas with common bio-optical properties, the 
results may be called optical water types. If remotely sensed spectra (an AOPs) are the main 
optical information source, we actually deal with spectral water types. However, this distinction is 
not always made. There certainly has been a long tradition of classification into ‘optical’ water 
types. Jerlov (1976) identified optically different classes for open ocean water I, IA, IB, II and III, 
and for coastal water 1 to 9, based on the curves of percent transmittance of downward irradiance 
against wavelength, which he derived through the use of broad band colour filters (which absorb 
part of the spectrum) in the surface layer. The Jerlov water types are in essence a classification 
based on water clarity as quantified by vertical diffuse attenuation (Kd) at a certain depth just below 
the sea surface, and wavelength (Mobley, 1994). This classification scheme can be contrasted with 
the case 1 and case 2 classification described by Morel and Prieur (1977), who classified ocean 
water into two classes (case 1 and case 2) based on IOPs, the type of absorbent particle 
suspended in the water column (Moore et al., 2001). Kirk (1980) extended this classification 
explicitly with soluble fractions, which is of interest for inland waters. In type G waters, gilvin 
(CDOM) absorbs light more strongly at all wavelengths in the photosynthetic range than the 
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particulate fraction. Prieur and Sathyendranath (1981) further expanded and elaborated the case 2 
classification. The idea is to take an optical property of interest, say absorption at 440 nm or 
reflectance at a certain wavelength, for a sample taken at a particular location and time, and 
compute the fractional contributions due to phytoplankton, yellow substances, and suspended 
material. The sample can then be characterised optically by a single point on a triangular plot, in 
which the axes are the fractional contributions due to each of the three components. Waters in 
which only one component dominates belonging to these cases would fall into one of the three 
smaller triangles demarcating areas close to the three apices. Cases where all the components 
play important roles end up in the central, inner triangle. In principle, this would be the most 
complex water type, from an optical point of view (Sathyendranath/IOCCG, 2000).  
 
For our project we foresee optical lake types that are optically dominated by chlorophyll (CHL), 
total suspended matter (TSM), and yellow substance (CDOM) mixtures, as well as lakes optically 
dominated by cyanobacteria, or mine tailing ponds. Even then, lakes such as the Australian salt 
lake Kati Thanda–Lake Eyre can have exceptional colours or spectra that will fall even out of these 
categories. Boundaries between water types can vary in time (e.g. with season) and are dynamic 
(Van der Woerd et al., 2004; Hommersom et al., 2010, 2011).  
 

1.3 Discussion on cluster approaches 

 
An overview of possibilities for optical pre-classification was extracted from the peer-reviewed 
literature. This ranges from pre-classification on an IOP level to clustering on reflectance (Moore et 
al., 2001, 2009) or sIOPs (Tilstone et al., 2012), or both. Spectra are non-linearly related to total 
IOPs. Successive decomposition of an IOP into component IOPs and subsequent conversion to 
concentrations through sIOPs adds variability and ambiguity. Should the pre-classification 
discriminate highly absorbing (high a), high scattering (high b), intermediate/low a & b (see e.g. 
Reinart et al. 2002)?  
 
Optical clustering based on information from nearby lakes 
For some (nearby) lakes we have quality controlled spectra, and sometimes concentrations and 
IOPs. These datasets enable constructing a classification framework for grouping waters into 
various types. The resulting classes could subsequently be used for pre-classification of all global 
lakes if we assume that unclassified pixels belong to a ‘novelty’ class, which comprises those 
spectra that cannot be assigned to any of the known classes (Schiller et al., 2007; Moore et al., 
2014). A good example of clustering on the concentration-specific absorption characteristics in 
bands that can be assigned to individual substances is given by Tilstone et al. (2012), scattering 
phase functions were not considered, because there are simply not enough measurements 
available (Tilstone et al., 2012). This illustrates that, if we want to cluster on optical properties, 
ideally we have to cluster on sIOPs, or full CSI sets, from which we derive also sIOPs. Such a 
quality controlled database for inland waters is currently being set-up under the name Limnades 
(http://www.globolakes.ac.uk/limnades/), and will prove to be extremely beneficial towards the 
understanding of limnological ecology on a global scale, and will also provide critical information for 
global climate change effects on lakes models (Mooij et al., 2005, 2007; Nõges et al., 2008). 
 
Spectral clustering 
If we focus on spectra as primary data source for all lakes, we can use a simple approach for the 
identification of the three basic water types. This consists in the comparison of the values from 
MERIS bands 7, 8 and 9 (central wavelengths 664.6, 680.8, and 708.3 nm, respectively), which 
allows for a simple classification of every pixel into one of the three types: highly absorbing, highly 
scattering or both (Shi et al., 2013a and b). We could also add another class using an additional 
blue band to pre-classify for high absorption dominated by high CDOM. In Shi et al. (2013b) a 
cluster analysis was applied to classify the entire set of Rrs(λ) spectra into homogeneous types. To 
preserve spectral shape information of Rrs(λ) in the classification, each Rrs(λ) was previously 

http://www.globolakes.ac.uk/limnades/
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normalized by its integral, computed over the entire PAR spectrum (Lubac and Loisel, 2007; Le et 
al., 2011). This amplifies the absorption characteristics.  
 
Moore et al. (2001) applied a fuzzy logic classification scheme applied to the satellite-derived water 
leaving radiance data to select and blend class-specific algorithms. Local in situ bio-optical data 
were used to characterize optically-distinct water classes a priori. A membership function 
expresses the likelihood that the satellite remote sensing reflectance belongs to a class with a 
known reflectance distribution. The χ2 implementation has similarities with other spectral matching 
algorithms (Hommersom et al., 2010, Brando et al., 2012, Tilstone et al., 2012). Class 
memberships can also be used to weight the class-specific retrievals and obtain a final blended 
retrieval for each pixel. Moore et al. (2009) used this technique to assess the increase in 
uncertainty of CHL estimates from ocean to coast with the standard OC3M algorithm (based on 
O’Reilly et al., 1998). Moore et al. (2014) aim at blending retrievals between such a blue/green 
(OC3M) and a red/NIR based algorithm for lakes and coastal water. This water type-specific 
approach is intrinsically independent of location and the time and therefore presumably more 
appropriate for geographically extensive application than empirical regional classification 
(Vantrepotte et al., 2012; Shi et al., 2013b).  
 
We will test the case-2 spectral classification method of Moore et al. (2014). The main reason is 
that we have satellite spectra for all lakes. Also, an approach focusing on sIOPs, the relationships 
between individual spectral inherent optical properties and optically active substances in lakes 
(Brando et al., 2012; Tilstone et al., 2012) tends towards retrieval instead of pre-classification.  
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2 Implementation of the OWT approach 

2.1 Clustering of in situ spectra 

 
Moore et al. (2001, 2014) designed a fuzzy logic spectral classification scheme that we adapted for 
GLaSS lakes. In situ hyperspectral data were used to characterize optically-distinct water classes a 
priori. The aggregate data come from multiple sources. The GLaSS dataset covers a wide range in 
concentrations, also for CDOM and SPM (Table 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. In situ data from various GLaSS partners and advisory board member Yunlin Zhang. 

 
The GLaSS in situ spectra were measured with spectrometers listed in Table 1. The measurements 
were performed according to standard protocols (e.g. Mueller et al., 2003). and included the 
measurement of: 1) Light emerging from water (Lw) with about 42 degree elevation angle from 
nadir and about 135 degree azimuth angle from the Sun; 2) Light from sky (Lsky) with about 42 
degree angle from zenith and about 135 degree azimuth angle from the Sun; 3) Downwelling 
irradiance (Ed). 
 
The remote sensing reflectance, Rrs (in sr-1) is then computed with: 
 

   ,   (Eq. 1) 

 

where the air-sea interface reflectance factor  is approx. 0.028 at a zenith angle of 42 degrees 
(Mobley, 1999). The number of measured spectra is 550. The conversion from above water Rrs 
(Eq. 1) to the below water RRs, for which the pre-classification works, is (Lee et al., 2002), Eq. 2. 
 

Rrs (0,-)= Rrs(0,+)/(0.52+1.7*Rrs(0,+)) (in sr-1)  (Eq. 2) 
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The GLaSS data were Rrs filtered and band averaged at 3 nm resolution. Subsequently, Rrs and 
Chl data were merged with Moore et al. (2014) ‘lake only’ data (N=320), that consist of assorted 
lake data from New England and the Great Salt Lake (Shane Bradt), Lake Erie (Tim Moore), 
Spanish lake datasets (Antonio Ruiz-Verdu). Rrs data collected on Lake Erie in 2013 by Moore 
were added (N=16). The hyperspectral resolution captures spectral features in the visible spectrum 
and near infrared ranges (VIS-NIR) and provides flexibility for adapting the derived OWT spectral 
reflectance characteristics to many sensors, such as S3 OLCI. This combined dataset (Fig. 3) 
ideally should include a complete representation of all possible water types.  
The merged data (with N about 926) were quality controlled and reduced to N=871. Several 
chlorophyll algorithms were run for consistency checking, and all data sets followed similar 
behaviour. 
 

 
Figure 3. Total Rrs input data, after quality control (courtesy Tim Moore). 
 
Merged, quality controlled data were subset to the MERIS bands (2-10, Table 1) before clustering, 
to suppress the influence of correlation between bands that did occur in using the full hyperspectral 
settings. They were used in the fuzzy c-mean (FCM) algorithm Bezdek (1981, see Moore et al., 
2014) for normal and PAR-normalised (Vantrepotte et al., 2012; Craig et al., 2012) reflectances. 
The latter to stress spectral shape (and thus absorption) characteristics. The FCM algorithm 
produces a fuzzy clustering of data into a specified number of clusters. The basic function of this 
algorithm is to choose clusters that minimise the distance between the data points and the 
prototype cluster centres (means). It is impacted by both the shape and magnitude of Rrs. Cluster 
centres are iteratively adjusted until optimization criteria are met: the relation of data points and 
cluster centres (mean vectors) are collectively in a better configuration in terms of compactness 
and separation aspects, than for other cluster choices. Thus the clusters were identified by Rrs with 
band subsets, but then sorted and re-created with all the bands. (assuming the subset does a good 
job of representing the important features). This way, the classification can be adapted to any 
satellite or band configuration. 
Hence, the clustering routine returns the optimal mean reflectance vector and co-variance matrix 
for each of the cluster classes, and thereby the “optical:” water types and memberships functions. 
These mean reflectances are the visual representations of the total in-water optical properties. 
 
For non-normalized clustering, the optimal number of classes (c) is 5 or 6. For PAR-normalized 
clustering, optimal c is 6 clusters. A trapezoidal numerical integration over PAR was used for the 
normalisation. Wavelength choices for integration match the nine MERIS bands (Table 1). Also, 
class means and one common inverted covariance matrix for all classes has been computed. (The 
matrix needed to be pre-inverted because of the normalisation and use of a common covariance 
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matrix for each class.) 
 
These three classifications were analysed, in order to understand which one represents better the 
different global lakes. In Appendix 2, results from all three methods were compared for the Dutch 
Lakes case. In Appendix 3 results of the GLaSS 5c and from a complementary ESA project 
Diversity II (http://www.diversity2.info/), a 7c inland classification are given. Appendix 3 (courtesy 
CNR) summarises a test on Italian alpine Lakes. 
 
Table 1. MERIS band number, centre wavelength and bandwidth(nm) 
2 442.55902 9.946 
3 489.88202 9.957 
4 509.81903 9.961 
5 559.69403 9.970 
6 619.601 9.979 
7 664.57306 9.985 
8 680.82104 7.488 
9 708.32904 9.992 
10 753.37103 7.495 
 

2.2 Implementation in BEAM 

 
The clustering process results in clusters that form the classes, which are defined by the means 
and co-variances of the clusters. These are the data that are needed for the membership function 
that BEAM can use. In order to update the processing the updated tables need to be provided. For 
normalized classes, the pixel spectra need to be normalized as well.  
 
Classification method by Moore et al. (2014) had been implemented in BEAM for first tests. 
However, for the global lakes of GLaSS, lakes with extreme CDOM concentrations, and lakes 
mainly influenced by SPM were missing from the training set. Therefore, three new GLaSS 
classifications were set up. A class with five clusters (5C), a class with 6 clusters (6C) and a class 
in which the spectra were normalised to their total intensity (the area below the graph) before 
clustering: the 6C_normalised clustering. Tim Moore provided these three data tables to BC, who 
implemented the classification method with these new values in the OWT tool in BEAM 5, so that 
we have a processor tool for GLaSS partners to use embedded into BEAM. 
 
The OWT can be found under VISAT’s Processing tab, on the Thematic Water Processing sub-
label. It is called MERIS OWT classification. The interface with the users consist on a window with 
the input and output parameters (source and target products), selection of directory, format of the 
output product and if the derived product should be open in VISAT or not. The Processing 
Parameters interface lets the user select the type of OWT and indicates the prefix used to identify 
the reflectance bands on the input product. In the example case the prefix is “reflec”. Reflectances 
can be somewhat different when produced with different atmospheric correction schemes (e.g. 
standard MEGS, CoastColour, C2R, etc.) and others. The user can opt for OWT input as 
RADIANCE_REFLECTANCES or IRRADIANCE_REFLECTANCES (ESA compatible).  
Remote sensing, or water leaving radiance reflectance (Eq. 3) is expressed in sr-1 units (theta_s is 
solar zenith angle). 
 
Rrs(+)= Lw/(E0*cos(theta_s))       (Eq. 3)  
  
Water leaving (irradiance) reflectance is implemented in BEAM according to Eq. 4 and is 
dimensionless. 
 
rho_w(+)= RLw = Lw*PI//(E0*cos(theta_s))      (Eq.4)  
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Based on this input, the OWT Tool will convert RLw into Rrs, or not. Internal calculations will also 
convert the satellite signal from Rrs(+) to Rrs(-) (Eq.2), and perform normalisation, so that remote 
sensing data sets, and in situ classes were treated equally, and there’s spectral matching on equal 
grounds.  
The OWT processor expects to find the reflectances following a naming convention which is 
<prefix>_i, where <prefix> is a user defined text and "i" is the MERIS band number, starting with 1. 
For instance "reflec_2_*".The <prefix> can be specified here in this text field. 
 

 

Figure 4. Optical Water Type classification tool in VISAT. 

 
The output file consists on one band per each cluster, without and with normalisation, one band 
indicating the dominant class, the class sum and the normalised class sum band (Figure 5). All 
pixels with reflectance data are evaluated and a probability of pertaining to the different clusters is 
generated. These are the membership maps. In some cases, it is possible that some pixels do not 
have membership in any of the OWTs, in that case they are assigned to NaN and depict in black. 
The dominant class band shows which of the OWT classes is dominant on each pixel, that is, 
which one is the maximum membership. The class sum band is the the sum of all class 
memberships. The normalization used is the simple division of the class by the class sum; 
therefore the norm_class_sum should be always 1 when the pixel has been classified in any of the 
clusters. 
 

 

Figure 5 Output bands after OWT classification 
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The number of classes depends highly on the input in situ data used; and it is possible and even 
likely, that the data collected do not represent all conditions 
 
The objectives of the first testing of the approach were: 
(1) to investigate how the MERIS spectra of the GLaSS lakes fit to the class-spectra; 
(2) to test Tim Moore’s Optical Water Types in situ spectra from GLaSS lakes. 
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3 Results 

3.1 The GLaSS clusters  

For each of the three GLaSS classifications, in situ data ended up in different classes. Tables 3a, b 
and c show for every lake in which classes the in situ data ended up.  The normalised classification 
resulted in a larger range of classes for many lakes, and notably the Finish ones (Table 3c) 
a) 

 

 

b) 
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c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables 3a, b and c. In situ classes per lake. 

 

The difference between the clusters can be easily seen when their reflectance means are plotted 
(Figs 6a, b and c). They are sorted purely on Rrs distribution, but are representations of optical 
conditions governed by the total absorption and scattering properties (IOPs) of the in-water 
constituents. The wavelength dependencies give us clues for the interpretation. This was done by 
the optical specialists for their nearby lakes in section 3.2. We refrain from a more generic 
attribution of absorption and scattering characteristic to the impact of the individual optically active 
components, or a more formal classification over here, also because this is beyond the scope of 
Task 3.2. 

 

6a) 

 

 

 

 

 

 

 

 

 

 

 

 

Normalised Method: 6 classes

Type

Source 1 2 3 4 5 6 Total

Finnish 0 11 0 1 4 0 16

Taihu 0 0 8 79 22 125 234

Peipsi 0 0 0 9 25 0 34

Markermeer99 0 0 0 1 1 0 2

IJsselmeer99 0 0 0 4 1 0 5

IJsselmeer 0 6 0 8 39 0 53

Markermeer 0 8 0 29 34 0 71

ITA ASD 79 9 0 1 1 0 90

ITA WSD 11 1 0 0 0 0 12

ITA PR 650 1 2 0 0 0 0 3

Betuwe 0 8 0 6 2 0 16

NH Lakes 27 60 26 32 33 1 179

Spanish lakes 25 52 1 37 25 0 140

Lake Erie 2 7 0 3 4 0 16

Totals 145 164 35 210 191 126 871
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6b)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 6a, b and c. Plots of the mean class spectra. 
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3.2 Methods for classification of the GLaSS nearby lakes 

The three classification methods (5C, 6C and 6Cnormalised) were applied to the GLaSS nearby 
lakes in Estonia, Finland, Italy, the Netherlands and Sweden. Before the classification can be 
applied, pre-processing and atmospheric correction are required. MERIS 3rd reprocessing data 
were used as input.  
 
Next, a suitable atmospheric correction method was chosen based on the results (Chi-square, 
Spectral Angle) as presented in the GLaSS D3.2 report on atmospheric correction. This 
atmospheric correction method differed per area. For some areas more than one atmospheric 
correction method was applied because the scores in D3.2 were comparable, or because one 
method had led to better results for Chi-square, while the other method apparently led to a better 
spectral shape and therefore a lower Spectral Angle. 
So for the classification of the nearby lakes, not a full matrix with all atmospheric correction 
processors combined with all three classification methods was used. Just the atmospheric 
correction processors that had shown the best results either for the Chi-square or for the Spectral 
angle in D3.2 for specific regions were applied here for those regions. 
 
However, not all atmospheric correction processors produce an output that is suitable as input for 
the OWT tool. The OWT tool requests all MERIS spectral bands 1-10, while for example the FUB 
AC-processor does not produce all of these as output. SCAPE-M was not included in the 
classification analysis, because of known problems with MERIS band 2, which would have a large 
influence on the produced classes. The MEGS processor was not included because of the 
extremely low valid pixels it produced in the atmospheric correction tests (0-14%, depending on the 
lake, D3.2). The results of 6S and ATCOR compared to the other atmospheric correction 
processors were not the best for any of the selected lakes, and have therefore been left out of this 
exercise. The remaining atmospheric correction processors that were used to generate the input 
for the OWT tool were therefore C2R, CC2R and MIP. The resulting classes are presented in 
sections 3.3-3.5. In a next stage, the images were pre-processed with ICOL to reduce the 
adjacency effects of nearby land in coastal pixels. These results are presented in 3.6. The 
classified maps of the nearby lakes are presented in section 3.7. 
 
The classification tool is vulnerable for differences is spectral shape and therefore also for errors in 
the atmospheric correction. From D3.2 and literature it is known that atmospheric correction over 
highly absorbing lakes is extremely difficult and most processors do not produce suitable results for 
these lakes. The absence of FUB in this exercise is therefore expected to led to less good 
classification results for the highly absorbing lake types e.g. in Finland and Sweden, because FUB 
produced the best atmospheric corrected products for these lakes (D3.2).  
 

3.3 Results 5C classification 

The 5C classification results (Table 4) could not easily be explained. Within one image, lakes that 
are seen as different types (GLaSS D. 5.1, Eleveld et al., 2014) were classified in one class, such 
as the Dutch lakes Markermeer (dominated by SPM) and IJsselmeer (dominated by Chl). The 
same is seen for clear and CDOM dominated Swedish Vänern and its very turbid bay Dättern. 
Between images, the same occurs, e.g. the Dutch and Finnish lakes being classified as 3. Also 
unexpected was that parts of the blue Italian lakes were classified as 3. Part of this is probably due 
to adjacency effects in these clear lakes, which leds to higher reflectance in the NIR and therefore 
a too high class. 
 

Table 4. 5C classification results 

Area + date AC-corr Class 1 Class 2 Class 3 Class 4 Class 5 Notes and/or class 
sum 
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  “Blue”
1
 “Low”

 1
 “Chl”

 1
 “Chl + 

TSM”
 1

 
“TSM + 
Chl”

 1
 

note 1 

Estonia 
20050718 

CC  North Peipsi Mid+South Peipsi,  
Võrtsjärv. All 
flagged as 'L2R 
suspect'. 

  North Peipsi 0.5-1.5, 
Mid+South Peipsi,  
Võrtsjärv <0.01-0.5.  

Estonia 
20110727 

MIP North of Peipsi 
and Võrtsjärv, 
some parts of 
South of Peipsi 

 Most of South of 
Peipsi 

  0.04 - > 1 (lowest 
values is South of 
Peipsi) 

Finland 
20040805 

C2R Borders of 
almost all lakes 

 Pääjärvi, Päijänne   0.3-0.4 

Finland 
20060509 

C2R Borders of 
almost all lakes 

 Pääjärvi, Päijänne   0.1-1.3 

Finland 
20040805 

CC  Part of Päijänne Most of Päijänne, 
Pääjärvi 

  Pääjärvi < 0.01. The 
pixels of Päijänne with 
class 2 have sums 
around 1, the other 
pixels < 0.5 

Finland 
20060509 

CC  Pääjärvi, 
Päijänne 

   0.1-1.5, large parts  > 
1 

Finland 
20070601 

CC  Open parts of 
Päijänne 

Parts of Päijänne, 
Pääjärvi. Part of 
these areas in 
Päijänne and 
complete Pääjärvi 
are flagged as 'L2R 
suspect' or 'L2R  
invalid'  

  Pääjärvi < 0.2. The 
pixels of Päijänne with 
class 2 have sums 
around 1, the other 
pixels < 0.5 

Finland 
20070823 

MIP Part of  
Pääjärvi and 
some pixels of  
Päijänne 

 Most of Päijänne 
and part of  
Pääjärvi 

  ~0.3-1 

Italy 
20090911 

CC South of Garda  North Garda, Di 
Como, Maggiore. 
All flagged as 'L2R 
suspect, and part of 
Di Como and 
Maggiore as 'L2R 
invalid' 

  Garda 0.2-1, Di Como 
and Maggiore <0.5,  

Italy 
20080506 

MIP   South of Garda   North of Garda not 
processed. Sums 0.5 
- > 1 

Netherland
s 20110415 

C2R All small inland 
lakes 

Most of 
IJsselmeer, part 
of Markermeer 

Most of 
Markermeer, parts 
of IJsselmeer.  

  0.4-1.5 

Netherland
s 20110423 

CC  Parts of 
IJsselmeer. 
Some coastal 
pixels flagged as 
'L2R suspect' 

Markermeer, most 
of IJsselmeer. 
Some coastal 
pixels flagged as 
'L2R suspect' 

  0.5-1.5 

Netherland
s 20110928 

MIP   Ijsselmeer and 
Markermeer 

  0.3 - > 2 

Sweden 
20030829 

CC  Largest part of  
Vänern 

Southern parts of 
Vänern, also 
Dättern. Dättern 
flagged as 'L2R 
invalid' 

  Vänern 0.5-1.5,   
Dättern <0.5 

Sweden MIP   All parts of Vänern   Large areas not 
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20090626 that were 
processed 

processed. Sums < 
0.5 

Note 1: the descriptions of these classes (within quotes) are just to easier read the table and interpret the results. It is important to 
realise that the classes do not represent concentration ranges.  
Note 2: CC2R flagged large parts of many of the lakes 'TOSA out of scope'. For readability this is not indicated in the table. 

3.4 Results 6C classification 

The method with 6 classes seems to better distinguish lakes within one image that the 5C method 
(Table 5). Markermeer and IJsselmeer are distinguished after atmospheric correction with CC or 
C2R. Also the Swedish lakes are classified according to expectations. For the clear lakes (Italy) 
and the more narrow areas (Finnish lakes) still unexpected classes (class 4) are found.  
 
Clearly, the results are influenced by (errors in the) atmospheric correction. For example, the 
Finnish lakes Pääjärvi and Päijänne can be classified as 1, 2, or 3 depending on the atmospheric 
correction that is used. 
 
After MIP atmospheric correction too many lakes were classified in class 1 (Pääjärvi, Päijänne, 
North of Peipsi, Võrtsjärv, North of Vänern). The main reason for this result seems to be the 
spectral shape: MIP had produced low Chi-square values in the atmospheric correction tests, 
however, its spectral angles were not the lowest compared to other processors (D3.2). The spectral 
examples in D3.2 (Figures 20-24) indicate that also this processor has a spectral tendency on 
increased reflectance in the blue bands, which may result from a non-optimal aerosol spectral 
slope applied here. This spectral tendency can explain why lakes are classified in class 1. 
However, also other reasons may impact the OWT classification, e.g. which SIOP's are used in the 
processor configuration for the coupled atmospheric and in-water influence. It may be noted, that 
MIP is the only processor that allows direct configuration of the aerosol slope and the SIOP's, and 
the only sensor independent AC program that also comes with an adjacency processor. However 
an optimization for MERIS was not performed here.  
 
From the remaining two processors (CC2R and C2R), CC2R had shown the best results in the 
atmospheric correction test (D3.2) for MERIS. This is reflected in these classification results: the 
classifications with CC2R as input where more as expected than those based on C2R input.  
 
Flagging 
CC2R flagged large parts of many of the lakes 'TOSA out of scope', so this flag was ignored to 
obtain data. Also, the pixels flagged with this flag did not show bad results. Flags that should not be 
ignored are CC2R flag 'L2R suspect' and CC2R flag 'L2R invalid'. In many cases these flags could 
explain unexpected classes. This occurred for the shorelines of the Finnish lakes Päijänne and 
Pääjärvi which were classified as 4 while class 2 was expected, parts of Italian lakes Di Como and 
Maggiore that were classified as 4 while class 1 was expected, and for the shorelines of the Dutch 
lakes IJsselmeer and Markermeer that were classified as 1, while classes 3 respectively 4 were 
expected. The Italian and Finnish lakes and shorelines were probably influenced by adjacency 
effect, which elevates the NIR part of the spectrum and therefore leds to a higher class. It makes 
sense that especially these lakes with a low reflectance are vulnerable for this effect.  
For the Dutch lakes, the explanation for raising the 'L2R suspect' flag and the following 
misclassification is not known. 
 
However, just flagging out all suspect and invalid flags does not always led to the best results. In 
cases of very turbid lakes, that contain high concentrations of both SPM and CDOM (e.g. Estonian 
lake Võrtsjärv and Swedish lake Dättern), this flag flags the complete lakes so no information 
would be obtained, while in these cases the obtained class 4 seems suitable. The main differences 
between flagging these complete lakes and application of the same flags in the cases of 
adjacency, is that the adjacency does not occur in the centre of a lake.  
 
Therefore, for further analysis of the 6C results, ICOL pre-processing was applied to correct for the 
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adjacency effect (see section 3.6).  
 
 

 



 
 
Global Lakes Sentinel Services (313256) 

 

25 

Table 5. 6C classification results 

Area + 
date 

AC-
corr 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Notes and/or 
class sum 

  “Blue”
1
 “Low”

 1
 “Chl”

 1
 “Chl+TSM”

 1
 “TSM+C

hl”
 1

 
“Extreme 
TSM”

 1
 

note 1 

Estonia 
20050718 

CC  Part of 
North  
Peipsi 

Part of North 
Peipsi 

South Peipsi, 
Võrtsjärv. All 
flagged as 'L2R 
suspect'. 

  South Peipsi, 
Võrtsjärv 
0.001-0.5. 
North Peipsi 
0.2- > 1. 

Estonia 
20110727 

MIP North Peipsi 
and Võrtsjärv 

 Few pixels in 
South of Peipsi 

South Peipsi   0.002-0.5 
(lowest 
values in 
South of 
Peipsi) 

Finland 
20040805 

C2R Pääjärvi, 
Päijänne 

     0.01-0.1 

Finland 
20060509 

C2R Coasts of 
Pääjärvi and 
Päijänne 

 Pääjärvi, 
Päijänne 

   0.01-0.9 

Finland 
20040805 

CC  Open part of 
Päijänne 

More narrow 
parts of 
Päijänne 

Shorelines of 
Päijänne, Pääjärvi. 
All fagged as 'L2R 
suspect' or 'L2R 
invalid' 

  Pääjärvi 
<0.1.  
Päijänne 
pixels with 
class 2 sum 
> 0.5, 
Päijänne 
pixels class 3 
or 4 sum < 
0.5 

Finland 
20060509 

CC Some pixels 
Pääjärvi 

Päijänne, 
some pixels 
Pääjärvi  

Most of 
Pääjärvi 

Some pixels 
Pääjärvi,  these are 
mostly flagged as 
'L2R suspect' or 
'L2R  invalid'  

  Päijänne 0.5-
1, Pääjärvi 
0.01-0.9 

Finland 
20070601 

CC Some parts of 
Päijänne 

Open parts 
of Päijänne 

Some parts of 
Päijänne Part 
of these areas 
are flagged as 
'L2R suspect' 
or 'L2R  invalid'  

Pääjärvi. Flagged 
as 'L2R suspect' or 
'L2R  invalid'  

 

  Pääjärvi < 
0.2. The 
pixels of 
Päijänne with 
class 2 have 
sums around 
1, the other 
pixels < 0.5 

Finland 
20070823 

MIP Päijänne and 
Pääjärvi 

     0.07-0.3 

Italy 
20090911 

CC South Garda   North Garda, 
North Di Como, 
North 
Maggiore. All 
fagged as 'L2R 
suspect' 

South Di Como 
and parts of 
Maggiore. All 
flagged as 'L2R 
invalid' 

  0.01-0.7 

Italy 
20080506 

MIP South Garda   North Garda    ~0.15-~0.3 

Netherland
s 
20110415 

C2R All inland lakes  Markermeer
, most of 
IJsselmeer 

Parts of 
IJsselmeer 

   0.1-1 

Netherland
s 
20110423 

CC Some 
shorelines of 
IJsselmeer and 

 IJsselmeer Most of 
Markermeer, some 
inland lakes. The 

   <0.1 – 1.5 
most 
between 0.5-
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Markermeer. 
Half of these 
flagged 'L2R 
suspect' 

inland lakes are 
flagged 'L2R 
suspect'  

0.9 

Netherland
s 
20110928 

MIP    Ijsselmeer and 
Markermeer 

  0.1-1.2 

Sweden 
20030829 

CC  Part of 
Vänern and 
Vättern 

Part of Vänern 
and Vättern 

Dättern, flagged 
'L2R invalid' 

  <0.1 – 0.9 

Sweden 
20090626 

MIP Northern part 
of Vänern 

 Most of  
Vänern, 
including 
Dättern 

   0.1-0.9 

Note 1: the descriptions of these classes (within quotes) are just to easier read the table and interpret the results. It is 
important to realise that the classes do not represent concentration ranges.  
Note 2: CC2R flagged large parts of many of the lakes 'TOSA out of scope'. For readability this is not indicated in the 
table. 
 
 

3.5 Results 6Cnormalised classification 

The normalised classification was expected to have two advantages:  
1) Be invulnerable to 'white errors' in atmospheric correction. Therefore, the expectation was 

that this method would led to good results for those atmospheric correction processors that 
scored well for the spectral angle (D3.2 report on atmospheric correction, because the 
spectral angle is a measure to compare the spectral shapes while ignoring the intensity). 

2) Be able to distinguish Finnish lakes based on their spectral shape. There are large 
differences between the Finnish lakes with regard to Chl, TSM and CDOM. However, 
because most lakes have relatively higher CDOM concentrations that other 'global' lakes, 
the Finnish lakes tend to be all grouped in one class with lakes with low reflectance (class 
2).  

 
Indeed, the 6Cnormalised classification was the only method that could make a distinction between 
the low-reflecting Swedish lakes Vänern (CDOM rich) and Vättern (‘blue’). However, the Finnish 
lakes Päijänne and Pääjärvi were still classified similarly, independent of the atmospheric 
correction method that was used. 
For the Estonian lakes more different classes are found based on the 6Cnormalised classification 
(after CC2R correction), which can be expected based on the optical variability of these lakes. The 
Dutch lakes IJsselmeer and Markermeer are however classified as 1 and 2, which is incorrect. 
These lakes are of different types and belong to much higher classes.  
 
For further analysis of the 6Cnormalised results, ICOL pre-processing was applied to correct for 
the adjacency effect (see section 3.6).  
 
 
Table 6. 6Cnormalised classification results 

Area AC-corr Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Notes and/or class 
sum 

  “Blue”
1
 “Low”

 1
 “Chl”

 1
 “Chl+TS

M”
 1

 
“TSM+Ch
l”

 1
 

“Extreme 
TSM”

 1
 

note 1 

Estonia 
20050718 

CC2R Some lake 
shores 

Part of North 
Peipsi 

Part of 
Võrtsjärv 

 Parts of 
North 
Peipsi 
and 
Võrtsjärv 

South of 
Peipsi 

0.1-1.6 
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Estonia 
20110727 

MIP    Small 
area in 
south of 
Peipsi 

 Almost 
complete 
Peipsi 
and 
Võrtsjärv 

Extremely low sums 
(<<0.001) 

Finland 
20040805 

C2R       Not many inland 
lakes processed. The 
ones that are 
processed are 
classified as class 1. 
Extremely low sums 
(<<0.001) 

Finland 
20060509 

C2R Päijänne, 
Pääjärvi 

Vesijärvi     Extremely low sums 
(<<0.001). Vesijärvi 
0.01-0.3 

Finland 
20040805 

CC2R Part of 
Päijänne, 
Vesijärvi 

Part of 
Päijänne, 
Vesijärvi 

   Most of 
Päijänne, 
Pääjärvi. 
Shores of 
Vesijärvi 

Pääjärvi <<0.001 – 
0.3, Päijänne 
<<0.001 – 1.8,  
Vesijärvi <<0.001 

Finland 
20060509 

CC2R Part of 
Päijänne, 

Part of 
Päijänne,  
Vesijärvi 

   Shores of 
Päijänne, 
Pääjärvi 

0.003 - >2 

Finland 
20070601 

CC2R Päijänne Vesijärvi    Shores of 
Päijänne, 
Pääjärvi 

Most <<0.001, 
however, there are 
pixels with sum >1 

Finland 
20070823 

MIP Parts of 
Vesijärvi 
and 
Päijänne 

Part of Vesijärvi    Parts of 
Päijänne, 
complete 
Pääjärvi 

Extremely low sums 
(<<0.001).  

Italy 
20090911 

CC2R Most of 
Garda 

    Di Como 
and 
Maggiore 

 Extremely low sums 
(<<0.001) 

Italy 
20080506 

MIP Garda      Extremely low sums 
(<<0.001). 

Netherlands 
20110415 

C2R Part of 
Ijsselmeer 

Parts of 
Ijsselmeer and  
Markermeer 

  Part of  
Markerme
er 

 Ijsselmeer <<0.001-
0.3, Markermeer 
0.01-0.9 

Netherlands 
20110423 

CC2R Part of 
Ijsselmeer 

Most of 
IJsselmeer, 
Markermeer 

   Inland 
lakes 

<<0.001-1.2 

Netherlands 
20110928 

MIP  Markermeer 
and most of 
IJsselmeer 

 Part of 
IJsselm
eer 

Small 
area in 
IJsselmee
r 

 Extremely small 
(<<0.001) - > 1 

Sweden 
20030829 

CC2R Vättern Vänern Dättern  Small part 
of Vänern 
that 
connects 
with 
Dättern 

 Vänern <<0.001-0.6, 
the parts classified 
as 3 or 5 sum 0.5 - > 
1. 

Sweden 
20090626 

MIP Large parts 
of Vänern 

Southern parts 
of Vänern 

Part of 
Dättern 

 Small part 
of Vänern 
that 
connects 
with 
Dättern 
and some 
bays in 
the North 

Part of 
Dättern 

<<0.001 - > 2, the 
parts classified as 3,  
5 and 6 have the 
largest sums. 
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Note 1: the descriptions of these classes (within quotes) are just to easier read the table and interpret the results. It is 
important to realise that the classes do not represent concentration ranges.  
Note 2: CC2R-NN flagged large parts of many of the lakes 'TOSA out of scope'. For readability this is not indicated in the 
table. 
 
 

3.6 Results after adjacency correction 

 
Because some results of the previous section were clearly influenced by adjacency effects (too 
high classes were assigned in narrow parts of the lakes and close to the shores), the ICOL 
processor was used for pre-processing to remove the adjacency effect, before processing with the 
CC2R-NN atmospheric correction processor. Next, the 6C and the 6C normalised classification 
methods were applied. The results are presented in Tables 7 and 8. 
 
As expected, the incorrectly assigned high classes in coastal areas and narrow lakes were not 
found any more after ICOL processing. This effect was mainly seen in the narrow Italian and 
Finnish lakes. Especially after application of the 'L2R invalid' flag, the remaining classes of these 
lakes were much closer to the expected class (1) than before ICOL processing. For the Italian 
lakes ICOL+CC2R 6Cnormalised leds to the best results (all lakes in class 1).  
As expected, for the lakes with larger areas in Estonia, the Netherlands and Sweden, ICOL-
preprocessing does not have an effect except of along the shorelines. There is no positive, but 
there also does not seem to be a negative effect. Therefore, if it has to be decided if ICOL should 
be applied before classification for an unknown lake, it is probably best to apply ICOL. Therefore, 
to produce the maps (section 3.7) ICOL has been applied. 
 
Flagging after pre-processing with ICOL 
After ICOL processing, most misclassifications related to adjacency effects seems to have 
disappeared. The 'L2R suspect' and 'L2R invalid' flags still remove some misclassified pixels along 
the lake shores (e.g. in the Netherlands, Finland), which could be caused by remaining adjacency 
effect, but also, especially for Finland where the issue is only seen for the first pixel, by mixed land-
water pixels. However, these flags tend to flag out large areas of valid pixels (for Dättern, Võrtsjärv, 
most of the Italian lakes). Therefore, to determine to which class the main part of the lake belongs, 
it is advised not to use additional flagging (besides land and cloud related flags). The not-
normalised results changed more after ICOL processing than the normalised results, indicating that 
the absolute classification results are more vulnerable to adjacency effects than the normalised 
results.  
 
 
Table 7. Results of the 6C classification after adjacency correction 

Area + 
date 

AC-corr Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Note on flags 

Estonia 
20050718 

ICOL + 
CC2R 

 Part of 
North Peipsi 

Part of North 
Peipsi 

South 
Peispi 
and 
Võrtsjär
v 

  'L2R invalid' 
would flag out 
the south of 
Peipsi and 
Lake  Võrtsjärv 

Finland 
20060509 

ICOL + 
CC2R 

Some pixels of 
Vesijärvi 

Päijänne Most of 
Pääjärvi and 
Vesijärvi  

    'L2R invalid' 
can be used to 
flags out some 
shoreline pixels 
that were 
classified as 4. 

Italy 
20090911 

ICOL + 
CC2R 

Main part of 
Garda. A part 
of this area is 

Lugano 
Flagged as 
'L2R invalid 

The northern 
part of Garda 
and Maggiore 

   Other lakes, 
e.g. Maggiore 
and Di Como, 
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flagged as 
'L2R suspect' 

Partly flagged 
as 'L2R 
suspect' or 
L2R invalid’  

are > 90% 
flagged 
'invalid'.  

Netherland
s 
20110423 

ICOL + 
CC2R 

Small 
shorelines of 
IJsselmeer 
and 
Markermeer. 
These + some 
areas around 
are flagged 
'L2R suspect'  

Parts of 
IJsselmeer 

Most of 
Ijsselmeer 
and half of 
Markermeer 

Half of 
Marker
meer 

  'L2R invalid' – 
this flags out 
some shoreline 
pixels that 
were classified 
as 1. 

Sweden 
20090626 

ICOL + 
CC2R 

 Part of 
Vänern and  
Vättern 

Part of 
Vänern and 
most Vättern 

Dättern   Clouds and 
cloud shadow. 
'L2R invalid' 
would flag out 
Dättern 

 
Table 12. Results of the 6Cnormalised classification after adjacency correction 

Area + 
date 

AC-corr Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Note on flags 

Estonia 
20050718 

ICOL + 
CC2R 

 Parts of 
North of 
Peipsi 

  Most of 
North 
of 
Peipsi, 
Võrtsjär
v 

South of 
Peipsi 

'L2R invalid' 

would flag out 
the south of 
Peipsi and 
Lake  Võrtsjärv 

Finland 
20060509 

ICOL + 
CC2R 

Some pixels of 
Vesijärvi 

Päijänne, 
about 1/3 of 
Pääjärvi  

Most of 
Pääjärvi and 
Vesijärvi  

    'L2R invalid' 
can be used to 
flags out some 
shoreline pixels 
that were 
classified as 4. 

Italy 
20090911 

ICOL + 
CC2R 

Garda, 
Maggiore, Di 
Como 

    Few 
shoreline 
pixels 

'L2R invalid' 
flags out 
almost all of 
the lakes 

Netherland
s 
20110423 

ICOL + 
CC2R 

Parts of 
IJsselmeer 
and some 
shores of 
Markermeer. 

Most of 
Ijsselmeer 
and 
Markermeer 

     

Sweden 
20090626 

ICOL + 
CC2R 

Vättern Vänern   Small 
part of 
Vänern 
that 
connec
ts with 
Dättern 
and 
Dättern 

 Clouds and 
cloud shadow. 
'L2R invalid' 

would flag out 
Dättern 

 
 

3.7 Classified maps 

 
To produce the maps, all lakes were treated the same with regard to pre-processing (3rd re-
processing, followed by ICOL) and atmospheric correction (CC2R) because this combination led in 
the previous sections to the overall best results. Next, both the 6C and 6Cnormalised classification 
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methods were applied. Both maps are presented and the results discussed. 
 
Estonian lakes 
 
The three classes that were found in Lake Peipsi have spectra that are similar to field 
measurements and the spatial distribution of the classes looks suitable. The southern part of Lake 
Peipsi has more sediments than northern part. The southern part of Lake Peipsi (L. Pihkva) is very 
similar to Lake Võrtsjärv, which is also seen in the classification. The northern part of Lake Peipsi is 
classified with classes 2 and 3. Although class 2 could occur in this part of the lake, at the time of 
image acquisition (July 18 2005) there was a large phytoplankton bloom in the northern part of the 
lake. In the beginning of July 2005, the measured Chl-a varied between 14-74 mg m3, being lower 
close to the shore and higher in the centre. In August the bloom was even more intense. Therefore, 
a mixture of classes 3 and 4 would be expected. The classification of 2 and 3 can probably 
explained by the fact the Peipsi also has a relatively high CDOM concentration of around 1 m-1 (at 
440 nm), which is not unusual. In situ measurements from 2008-2011 gave an average value of 
CDOM in Peipsi s.s of  3.1 m-1 (Elar Asuküll's Master thesis (TO)). ICOL processing did not change 
the results much. Also, the southern part of Peipsi and Võrtsjärv were still flagged as 'L2R invalid' 
after ICOL processing.  
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Figure 7. Estonian Lakes Peipsi (right) and  Võrtsjärv (left). MERIS 20050718, ICOL+CC2R. Flagged 
(grey) with 'L2R suspect'. 'L2R invalid' was ignored because this would flag the south of Peipsi and 
complete Võrtsjärv. Top: OWT_6C, bottom: OWT_6Cnormalised  
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Finnish lakes 
 
With the 6C classification, most of Päijänne and the central parts of Pääjärvi fall into class 2 (the 
class with the lowest Rrs).This is correct since these lakes have low reflectances (Pääjärvi due to 
CDOM absorption and Päijänne due to low TSM). Lake Vesijärvi (south of Päijänne and east of 
Pääjärvi) is in class 3. This is correct since that lake has low CDOM and typically higher TSM and 
Chl-a and thus higher Rrs (especially later in the summer). However, before adjacency correction, 
Lake Pääjärvi appeared to have a lot of variability (classes 1, 2, 3 and 4). This is not correct. After 
pre-processing with ICOL, Päijänne remains in class 2 and Vesijärvi in class 3 (plus a few pixels in 
class 1). The results for Pääjärvi improved. Although a classification with just class 2 was 
expected, after ICOL processing 2/3 of the lake was assigned to class 3 and 1/3 to class 2, but the 
higher classes in the centre of the lake disappeared. The 'L2R suspect' allows to flag out the too 
high class 4 pixels at the lake shores of Päijänne. With the 6Cnormalised tool, Päijänne and 
Pääjärvi fall in class 1 and Vesijärvi in class 2. It was indeed hoped for that the normalisation would 
be able to distinguish as a relatively blue lake, but Pääjärvi is not blue and should therefore have 
been classified as 2 instead. Because also other surrounding lakes are classified as 1, it seems 
that the normalization is not an improvement for Finland. At least not when applied after CC2R 
atmospheric correction, FUB atmospheric corrected data as input could have improved the results. 
 

   

Figure 8. Finnish Lakes Päijänne, Pääjärvi and Vesijärvi. MERIS 20060509, ICOL+CC2R. Left: 
OWT_6C no flagging. Middle: OWT_6C 'L2R invalid' flagged out. Right: OWT_6Cnormalised with 
flagging 
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Italian lakes 
 
Overall, class 1 should be suitable for all Italian lakes, but depending on the season and day also 
class 3 makes sense. The south of Garda should generally be classified as 1, so this is correct. 
However, without ICOL processing for adjacency effect correction, a large part of Garda and all the 
other lakes in the area were flagged as 'L2R invalid' or 'L2R suspect'. The classes found behind 
the flags were too high (e.g. classes 3 and 4 were found). This can be explained by the adjacency 
effect, which lifts the NIR region of the spectrum. After ICOL + CC2R processing, a very large area 
of the lake was flagged as 'L2R suspect' but when this flag was ignored, a larger area of Lake 
Garda was found to be classified as class 1 and a small part as class 3. The other Italian lakes 
were > 90% flagged as 'L2R invalid'. However, the classes found in these lakes (1, 2 and 3) are 
close to correct so the flagging seems to be too tight. Only in Lake Lugano and Idro, some parts 
are classified as 4, which seem incorrect.  
 

 

 

Figure 9. Italian Lakes, from left to right: Lago Maggiore (partly), Lugano (mostly a Swiss lake), 
Como, Iseo, Idro and Garda. MERIS 20090911, ICOL+CC2R. No flagging applied. Top:  WT_6C, 
bottom: OWT_6Cnormalised 
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Lakes in the Netherlands 
 
The Dutch Lake IJsselmeer and its splitoff Lake Markermeer have quite distinct optical properties. 
Markermeer is shallower and is characterized by fine, easily resuspendable sediments, and has 
therefore frequently higher surface TSM concentrations. The River IJssel discharges in lake 
IJsselmeer, which has therefore had higher nutrient inflows in the past (these have been reduced 
since the late 80’s) and is still optically dominated by phytoplankton and cyanobacteria blooms. As 
expected, Markermeer is (partly) classified as class 4, while the main part of IJsselmeer is in class 
3. Markermeer also contains class 3, which is correct. IJsselmeer also contains some class 2 
pixels, which could be caused by high chlorophyll absorption. In both lakes some class 1 pixels 
were found along the shorelines. This is not correct and could not be explained. It was not solved 
by applying ICOL (adjacency effect would indeed not lead to a lower class). However, all these 
pixels were correctly flagged as 'L2R invalid' or 'L2R suspect'.  
 

  

Figure 10. Dutch Lakes IJsselmeer (north of the dike) and Markermeer (south of the dike). MERIS 
20110423, ICOL+CC2R. 'L2R invalid' flagged out, flagged (grey) with 'L2R suspect'. Left OWT_6C, 
right  OWT_6Cnormalised 
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Swedish lakes 
 
The two largest Swedish lakes are Vänern and Vättern. Vättern is very clear (very low 
concentrations of Chl, SPM and CDOM). Vänern has (low concentrated) Chl blooms and a 
relatively high CDOM concentration of around 1 m-1 (at 440 nm). Both lakes were largely classified 
as class 2, Vänern also partly as class 3. The small bay Dättern, on the south of the eastern basin 
of Vänern, is very turbid, with high concentrations of SPM (> 30 g m-3), Chl (> 30 mg m-3 in 
summer) and extreme concentrations of CDOM (3-10 m-1). Dättern was classified as 4, which 
makes sense, because of the spectral shape. Due to the high CDOM absorption it did not fall in 
classes 5 or 6. After ICOL processing the results for Vänern did not change much, while Vättern 
was now mainly classified as 3 (while 1 had been more suitable). Also, the cloud shadow flag was 
clearly influenced by ICOL. ICOL processes a certain number of pixels from the shore in one 
direction. The same shape was seen as cloud flag on one side of each cloud. Therefore, large 
areas were unnecessary flagged. Dättern continued to be flagged as 'L2R invalid' after ICOL 
processing. The result without ICOL processing is therefore presented. 
 

  

Figure 11. Swedish Lakes Vänern (left) and Vättern (right). The bay Dättern is indicated with the (red 
circle). MERIS 20060509, ICOL+CC2R. Only cloud (white) and cloud shadow (partly transparent 
white) flagging applied. Left: OWT_6C, right: OWT_6Cnormalised 
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3.8 Proposed processing chain 

 
The aim of the classification tool is to produce a classified map for an unknown lake, which can 
assist the user in choosing the best suitable atmospheric correction schema and the best inland 
water constituent retrieval algorithm, or to choose the best suitable tuning of an constituent 
retrieval algorithm. In these cases, the classification tool will be used without much prior knowledge 
about the lake. Also, in these cases it will not be possible to pre-select the most suitable 
atmospheric correction schema and the most suitable classification method.  
 
Therefore, based on the results of the previous sections, a processing schema is preoposed to 
apply to an unknown lake to obtain a proper classification of the lake. 
 
Based on the results presented before, the proposed processing chain for unknown lakes is as 
follows (Figure 12. For an unknown lake, adjacency effect correction by ICOL is advised, followed 
by atmospheric correction with CC2R, because this combination led in the previous sections to the 
overall best results. Note: CC2R led to the best classes for most of the lakes. For analysis of what 
the best atmospheric correction schema is with regard to obtained reflectance and options to tune 
or apply to other sensors, the reader is referred to D3.2.  
 
For an unknown lake it is hard to decide if the 6C or 6Cnormalised classification is best to use. For 
the Dutch lakes, the 6C classification is best, while for the Italian and Swedish lakes the 
6Cnormalised classification provided the best results in this test. For the Estonian lakes, the 6C 
classification leads to somewhat lower classes than expected, while the 6Cnormalised 
classification leads to probably just too high classes. The assumption based on this small set of 
test lakes is that the 6Cnormalised classification is an improvement for the lakes or areas that were 
classified as class 3 with the 6C classification (part of the Italian and Swedish lakes, the Finnish 
lakes), while the 6Cnormalised classification looses the information for the lakes that were 
classified as 4 in the 6C classification (e.g. the Dutch lakes and the most turbid Estonian lakes). 
Therefore, both the 6C and 6Cnormalised classification method can be applied.  
 
Although the 'L2R suspect' and 'L2R invalid' flags remove some misclassified pixels along the lake 
shores, which could be caused by remaining adjacency effect or by mixed land-water pixels, these 
flags also tend to flag out large areas of valid pixels. Therefore, to determine to which class the 
main part of the lake belongs, it is advised not to use additional flagging (besides land and cloud 
related flags). It is advised to ignore the often much higher classes that are found in the 1-2 pixels 
along the shores of a lake.  
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Figure 12 Proposed processing chain including the OWT tool (GLaSS 6C classification) 
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4 Conclusions and outlook 

The differences in colour within or between lakes are a function of the optically active substances 
in these waters (under similar or normalised viewing and illumination geometries, and weather 
conditions). We classified these colours of the lakes by clustering a compiled set of in situ 
measured remote sensing reflectance spectra into three classification schemes (5C, 6C and 
6Cnorm). These were then used to map the dominant spectral water types in several MERIS 
images. First results seem to indicate that processing MERIS L1b (MER_FSG_1PP) products with 
the CoastColour atmospheric correction (which generated CC2R2L products), and an OWT 
classification with 6 classes (absolute or normalised) gives credible results for many lakes. These 
made GLaSS partners enthusiastic about the possibilities that this tool might offer for testing 
different atmospheric correction schemes, and they are interested to investigate this further when 
developing their GLaSS case studies. In such a way, the colour of lake waters, captured as the 
remote sensing reflectance spectra in satellite images can be an extremely valuable indicator for a 
first inventory of global lakes. 

We could also aim for selection of algorithms optimised for local conditions at a certain time, by 
using Moore et al.’s (2014) fuzzy approach to direct the algorithm selection and weigh the merging. 
Spectral matching could be used to assign the “best performing” algorithm to a particular water 
type, and class memberships can then be used to weigh retrievals into a blended product. 
However, this may direct us away from a more physically based approach in which we vary sIOPs 
directly for optimizing retrievals, and therefore this may be one step too far for GLaSS.  

Nonetheless, within GLaSS, we will produce time series of satellite products and demonstrate the 
complementarily with field sampling for water quality and trophic status reporting. Algorithms with 
limited range, or hard classifiers, with boundaries that are fixed in time and space might not provide 
good quality output for extreme cases. In these situations, the optical preclassification can indicate 
where and when major changes in spectral water type occur, and show hotspots for additional 
collection of spectra, concentrations, and IOPs (SCI-datasets).  

Now that the processor seems to work for MERIS, a logical next step would be to test on simulated 
OLCI and Sentinel 2 Rrs images. After all, the GLaSS core system will be built using existing 
components that will allow to access, pre-process and distribute very large quantities of data 
coming from S-2 and S-3. 
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5. Case studies as appendices 

After the reference list, three appendices are included in the document to further investigate the 
use of OWT applied to MERIS images of different lakes. They also makes use of match-ups with in 
situ data to verify the results. 

The first case study (Appendix 1) analyses the impact of different OWT classifications for different 
atmospheric corrections. The study is focused on shallow and turbid lakes in the Netherlands. 

The second case (Appendix 2) shows how OWTs can be used to compare spatial variability (within 
and between lakes), as well as temporal spectral variability (in time-series). The work shows 
results for different European lakes, some of which are boreal, and others are trans-boundary (e.g., 
Lake Constance) 

The third case (Appendix 3) shows the results for clear, deep lakes in the southern alpine eco-
region, which are very different from the turbid shallow lake type discussed in Appendix 1. 
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Appendix 1: Mapping the impact of different OWT classifications for 
different atmospheric corrections of Dutch lakes 

Marieke Eleveld 
 
This case study was started with the following questions in mind: 

 Can the GlaSS 5, 6, or 6n classes map variability between and within Dutch lakes? 

 Do the 5 and 6 classes map impact of scattering because these classifiers are influenced by 
the height of the spectrum, while 6n maps absorption from the shape of the spectrum? 

 What is the impact of different atmospheric corrections on the water type maps? 
 
 
First the results from the clustering of in situ data spectra (courtesy Tim Moore) were examined. 
Going through the clustering of in situ classes from 5c to 6c and 6c-normalised (see the following 
three tables), shows that Marker- and IJsselmeer spectra end up in higher classes with each 
classification. Except for 2 spectra that were classified (perhaps misclassified) to class1, all spectra  
have been assigned to classes that show characteristics typically associated with absorption of in-
water substances in case-2 waters. 
 

Five classes

Non-normalised: 5 Classes

Type

Source 1 2 3 4 5 Total

Finnish 0 16 0 0 0 16

Taihu 0 0 14 129 91 234

Peipsi 0 0 24 10 0 34

Markermeer99 0 0 2 0 0 2

IJsselmeer99 0 0 5 0 0 5

IJsselmeer 2 6 45 0 0 53

Markermeer 0 0 71 0 0 71

ITA ASD 85 0 2 3 0 90

ITA WSD 12 0 0 0 0 12

ITA PR 650 0 3 0 0 0 3

Betuwe 0 12 4 0 0 16

NH Lakes 38 42 97 2 0 179

Spanish lakes 28 86 25 1 0 140

Lake Erie 4 0 9 3 0 16

Totals 169 165 298 148 91 871  
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The relative RMSE between the drawn in situ line (st. 47, 1 min 
matchup) and all Types was calculated following Odermatt et al. 
(2010).  

 

For 28/09/2011comparison of 
matchup in situ spectra and 
means from these cluster two analyses 

5classes

field campaign sites

Relative RMSE of 47.0 % between 

the in situ matchup and Type 2

Relative RMSE of 8.6 % between 

the in situ matchup and Type 3

6classes
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where N are the 134, 3 nm band intervals, and Ẋi and X^
i are the hyperspectral in situ Rrs-, and the 

RRs- of the different water types, respectively. The class with the lowest relative RMSE values is 
given.  

For 6classes the match between in situ data and Type 3 is best, X2 and (relative) RMSE both give 
lowest values for this class. 

For 5classes Type 2 instead of Type 3 had the lowest RMSE (see previous page Five Classes). 
Type 1 had a relative RMSE of (55.1%) and 3 (63.1%). Type 4 and 5 were far off. 
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To check if scattering and absorption have a clear impact, visual comparisons with verified TSM 
results from a previous study (next Figure), as a CHL indicator were enabled. 
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28 Sept. 2011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maps resulting from the 5-classes scheme show predominance of classes 2 (highly absorptive) 
and 3 for different degrees of turbidity and trophic conditions. For the 6-classes scheme this shift to 
classes 3 and 4 (which feature spectral characteristics that can be associated with both absorption 
and scattering). This seems more reasonable for these environments. Normalising for spectral 
intensity causes Markermeer and IJseelmeer spectra mainly to end up in classes 2 to 5 for Class 
6-normalised classification.  
 

Concerning the atmospheric corrections, the Standard 3rd reprocessing (MEGS8.1 L2 products) 
seems to perform well, but this is not the case when negative reflectances would be masked. This 
results in many invalid pixels. Therefore it seems that processing L1b with the CoastColour 
atmospheric correction (which generated CC2R2L products), and an OWT classification with 6 
classes give best results. However, there are of many more atmospheric processors available 
(GlaSS Task 3.2 report). As an example we include preliminary result from MIP (image from the 
same day, 06’31” time difference in file name). Note that all these processors were configured with 
standard atmospheric (and in-water) sIOPs which impact the result. They can produce better 
results under optimal configuration. 

28 Sept. 2011 
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MEGS8.1

CCL2R

C2R
Standard
settings

6classes5classes 6c-normalised

CHL index 
CCL2R
band9/band7

Huge difference between MM and IJM

Clear patterns in IJM
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For the MERIS bands (N=9, band 2 ..10), RRs- extracted from remote sensing data Ẋi was 
compared with RRs- of the different water types X^

i. The class with the lowest relative RMSE 
values (Odermatt et al., 2010) is not always the same as the dominant class assigned by the OWT 
processors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These results offer possibilities for further methodological studies, which go beyond what was 
anticipated for Task 3.2: 

For all images, the normalised approach gives different results for the standard atmospheric 
correction (MEGS 8.1) than for the other neural nets (Coast Colour, C2R). Is it perhaps related to 
the many negative reflectances encountered in MEGS 8.1?  

The X2 GoF and the (relative) RMSE give different results: based on a (rel). RMSE different 
classes could be assigned to be dominant. However, the equations for both statistical measures 
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are quite different (see statistics handbooks).  

Also, for the rel. RMSE, MERIS reflectances (Rrs-) extracted from the remote sensing data were 
compared to class means at the matching centre 3 nm wavelength. Hence, both the spectral 
response function, and the spread between the classes were not taken into account in the latter 
simplified approach. 

However, all plots clearly do show that there can be substantial differences between the measured 
in situ or EO remote sensing reflectances, and the (dominant) OWT reflectances. These are 
wavelength dependant. 

 

In conclusion: 

 The results support the 6 and 6n classifications, five classes seem less suitable.  

 Linking the 6 classes classifier to TSM scattering and 6n to mapping CHL absorption did not 
lead to conclusive results 

 The atmospheric corrections have a huge impact remote sensing reflectances, and 
consequently they also impact water type maps. 

 Substantial wavelength dependent differences between the measured in situ or EO remote 
sensing reflectances, and the (dominant) OWT reflectances were found. 

 

Protocols used to create the maps 

For testing the following steps were followed: 
1) Make a subset (area covering the lakes) using Processing Geometric operations Spatial Subset 
from View, save Product as dimapfile just to make processing faster 
2) Use several atmospheric corrections such as MEGS 8.1, CCL2R (CC2R in D 3.2), C2R 
(standard settings) and MIP, and run the OWT tools, 5, 6, 6-normalised.  
3) In displaying the dominant class flag out land and clouds with the Manage Binary data Masks 
button 
 

Detailed protocol for developing the Dutch test case 

1) Open .N1 file either:  
1a) MER_FSG_2PPEPA*, 1b) MER_FSG_1PPEPA* 

2) click Band “some band” 
Processing > Geometric Operations > Subset from view > Spatial Subset > Geo Coordinates 
North latitude bound 53.50, West longitude bound 04.50, South latitude bound 51.80, East 
longitude bound 06.50 (this is somewhat larger than the region defined in D5.1, just to ensure that 
we capture lakes IJsselmeer and Markermeer.) Save product as subset_0_of_MER_FSG* 

3) For different atmospheric corrections, either:   
3a) MEGS8.1 based on subset_0_of_MER_FSG_2PPEPA* Processing > Thematic Water 
Processing > MERIS OWT Classification > I/O Parameters  
Source subset_0_of_MER_FSG_2PPEPA Target 
subset_0_of_MER_FSG_2PPEPA_*_owt5, 6, 6n 
Processing Parameters GLASS_5c Reflectances prefix: reflec Write input reflectances. 
Input reflectance is Irradiance_Relectances (ESA Compatible) 
4) For diferent OWTs: 
4a) 5 classes  
4b) 6 classes 
4c) 6 classes-normalised 
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5) Click bands > class > dominant class, Colour manipulation > Import colourscale 0wt_5, 
6_classes.cpd. Automatically distribute between max/min No. Manage binary datamasks 
land and clouds white. (NB note that there are Invalid reflectances in this product, but 
visualizing them by masking 80% gray impacts too many pixels. This was previously also 
the case with the previous, 2nd reprocessing). One might navigate and zoom, but the view is 
normalised by Export view as an image Full scene (as .jpg and tiff) 

  
3b) CCL2R based on subset_0_of_MER_FSG_2PPEPA* Processing > Thematic Water 
Processing > MERIS CoastColour Processing > CoastColour Atmospheric Correction >  
Source subset_0_of_MER_FSG_1PPEPA Target subset_0_of_MER_FSG_1PPEPA_*_L2R 
On Processing Parameters Perform Smile-effect correction (others have been done in 
previous processing steps) Average salinity 0, Average temp a reasonable values Use NN, 
land mask & cloud/ice detection expression (use default) Write all reflectances as 
Irradiance_Relectances (ESA Compatible)  
Subsequently as under 3a  
(Invalid reflectances l2r_cc_input_invalid &L1b_invalid can be set to gray 80%, however to 
normalise between processing chains standard settings were retained) 
3c) C2R  
Source subset_0_of_MER_FSG_1PPEPA Target 
subset_0_of_MER_FSG_1PPEPA_*_C2IOP 
Perform atmospheric correction, Smile correction Output water leaving reflectance as 
Irradiance reflectances (ESA compatible) 
Use NN, land mask & cloud/ice detection expression (use default). Standard settings also 
comprise TSM conversion exponent 1, factor 1.73, CHL conversion exponent 1.04, factor 
21.0 Spectrum out of scope threshold 4.0 Invalid pixel acg_flags.INVALID? 
The atmospheric and in water NN are coupled. Which values should we really take. Link to 
Task 3.1. 
Manage binary datamasks land clouds white, reduce Transparency to zero. Invalid 
(agc_invalid & invalid can be set to gray 80%, but standard settings were ratianed).  
 

3d) MIP 
Open in BEAM  and save it as BEAM-DIMAP product. For the first ten bands, us band 
ratios to calculate Rrs+ (MIP produces Rrs-), using:  
Rrs (0,+) = 0.52*Rrs(0,-)/(1- 1.7*Rrs(0,-) ) 
 
which is the reworked standard NASA algorithm for conversions between Rrs+ and Rrs- 
Rrs (0,-)= Rrs(0,+)/(0.52+1.7*Rrs(0,+)) (in sr-1)  (Lee et al.,2002) 
 
Next, open de .dim file in a text editor and replace the <Spectral_Band_Info> of the newly 
created bands with: 
            <BAND_INDEX>15</BAND_INDEX> 
            <BAND_DESCRIPTION>Water leaving radiance reflectance at 412.691 
nm</BAND_DESCRIPTION> 
            <BAND_NAME>reflec_1</BAND_NAME> 
            <DATA_TYPE>float32</DATA_TYPE> 
            <PHYSICAL_UNIT>sr^-1</PHYSICAL_UNIT> 
            <SOLAR_FLUX>1668.2919</SOLAR_FLUX> 
            <SPECTRAL_BAND_INDEX>0</SPECTRAL_BAND_INDEX> 
            <BAND_WAVELEN>412.691</BAND_WAVELEN> 
            <BANDWIDTH>9.937</BANDWIDTH> 
            <SCALING_FACTOR>1.0</SCALING_FACTOR> 
            <SCALING_OFFSET>0.0</SCALING_OFFSET> 
            <LOG10_SCALED>false</LOG10_SCALED> 
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            <NO_DATA_VALUE_USED>false</NO_DATA_VALUE_USED> 
            <NO_DATA_VALUE>0.0</NO_DATA_VALUE> 
Do this for the ten newly createdbands. Do not forget to update the band index number. 
Remove the lines  <VALID_MASK_TERM>!agc_flags.INVALID</VALID_MASK_TERM> for each band  
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Appendix2: Comparison of the INLAND 7C OWT classification 
(Diversity) with the GLASS 5C classification 

Ana Ruescas and Daniel Odermatt 

Introduction 

A comparison of two different classification schemas was done as a contribution of the Diversity 
project in Glass. The comparison consisted on using two different classification schemas and 
observe how the water in the lakes are assigned in each one: the seven classes distribution of the 
INLAND classifier used in Diversity, and the GLASS classifier with 5 classes.  
The INLAND OWT classifier used in Diversity consists of seven classes whose mean and 
covariance where calculated using a set of in situ bio-optical data that combines coastal and inland 
waters. The three main sources are a dataset collected by the University of New Hampshire (UNH) 
in various north-eastern US lakes as well as the Great Salt lake in Utah (Bradt, 2012); a dataset 
from Spain covering many lakes and trophic conditions (Ruiz –Verdú et al., 2008); and a dataset 
obtained from NASA’s SeaBASS archive primarily from US coastal marine sites (Werdell et al., 
2003). All reflectance data were collected with hyperspectral instruments, which were binned at 3 
nm intervals from 400 to 800 nm. The hyperspectral resolution capture spectral features 
throughout the visible spectrum and the NIR and provides flexibility in adapting the derive OWT 
spectral reflectance characteristics to many sensors. The total number of reflectance data with co-
measured chlorophyll-a data was 488 points. The dataset ideally should include a complete 
representation of all possible water types. The statistical properties for each class or cluster found 
in the dataset, becomes the basis for defining membership to each class. In Figure 1 the histogram 
of the combine in situ chlorophyll-a values is shown. 
 

 

Figure 3 Histogram of the combined in situ chlorophyll-a dataset 

The data cluster analysis is the fuzzy c-mean (FCM) algorithm (Bezdek, 1981) applied to the in situ 
reflectance data. The FCM algorithm produces a fuzzy clustering of the data into a specified 
number of clusters. The basic function of this algorithm is to choose clusters that minimize the 
distance between the data points and the prototype cluster centers (means). Cluster centres are 
iteratively adjusted until optimization criteria are met. The clustering routine returns the mean 
reflectance vectors for the cluster classes and a matrix containing the memberships of each point 
to each class. The best number of clusters for the datasets used here is seven. Once clusters have 
been identified, the mean and covariance matrix is calculated for each one. These statistics define 
the optical water types, and are subsequently used in the membership function. The cluster 
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analysis separated and differentiated sunsets based on both the shape and magnitude of the Rrs. 
The results are shown in Figure 2. 

 

Figure 4 Reflectance data sorted into seven clusters from the fuzzy c-mean cluster 
analysis; blue lines: individual station reflectance data; red lines: mean reflectance (from 
Moore et al. 2014) 

The difference between the clusters can be easily seen when their reflectance means are plotted 
together -see Figure 3-. They are representations of averaged conditions governed by the optical 
properties of the water column and depend on the absorption and scattering properties (IOPs) of 
the in-water constituents. 

 

Figure 5 The reflectance means of the seven OWT in the INLAND classifier 

The OWTs are organized based on spectral features and ascending chlorophyll-a  concentration. 
The OWTs show a pattern of increasing absorption in the blue/green for low red/NIR features 
(OWTs 1 through 3, see Figure 2), followed by increasing peak magnitude at 555 nm (types 4 to 7). 
OWTs 1 through 5 show increasing chlorophyll-a concentrations, while 6 and 7 have lower 
chlorophyll-a values. OWTS 1-3 have low overall spectral magnitude and show relatively flat 
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features from 600 nm onward compared to the others OWTs. From 4 to 7 show higher overall 
magnitudes and more features especially in the red/NIR region. These OWTs show peaks around 
700 nm, but different from each other in order of magnitude. This peak is characteristic of strong 
particle backscattering and has been associated with high algal particle concentration. All OWTs 
show a reflectance peak to some degree at or near 555 nm, which can be attributed to enhanced 
particle scattering from living and non-living sources. Other secondary peaks are seeing at or near 
650 nm in these OWTs. Values from the mean and median of the chlorophyll-a concentration 
increased from OWT1 to OWT 5. OWT 6 and 7 have lower chlorophyll-a values than OWT 5, but 
comparable to OWTs 3 and 4. 
 
The GLASS 5c classification has been profusely explained in the deliverable (D3.3 Optical pre-
classification method). The in situ reflectance used to train the fuzzy classifier come exclusively 
from lake waters, marking in this way the difference with the INLAND classifier that included 
coastal waters reflectance too. The equivalent plot to the INLAND classification of Figure 3 is 
shown in Figure 4 for the GLASS 5c classification.  

 

Figure 6 The reflectance means of the five OWT in the GLASS classifier 

One of the clearer water classes in the INLAND classification has disappeared in the GLASS 
classification (INLAND class 3), and class 5 in INLAND does not exist in GLASS. The classes that 
represent the turbid waters (INLAND class 6 and 7) have a slightly different shape in the GLASS 
class 4 and 5, with a less accentuated peak in the 550-600 nm area and a smoother slope until the 
second peak at around 700 nm.  This probably indicates a higher mixed in the water composition 
of the lakes compare with the more distinguishable chlorophyll/sediment waters on coastal areas. 
The in situ data set also counted with some high CDOM samples from Finnish lakes, but probably 
due to its small number compared with the other water types, the distinction of these high CDOM 
lakes from the clearer waters was not possible. For a closer look to the 5 classes distinguished. 
In the following sections, the two classifiers were applied to the same image dataset for four lakes: 
Lake Balaton (Hungary), Lake Constance (Germany), Lake Peipsi (Estonia) and Lake Paijanne 
(Finland) have been classified with the INLAND and the GLASS classifiers.  Data was 
atmospherically corrected with the CoastColour algorithm, and the results were classified by types 
of water with the two different schemas. Daily, monthly and yearly compositions  (2008) are then 
analysed. 
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Lake Balaton 

Ten different days (images) of the lake Balaton have been processed with the OWT tool, they are 
daily composites for different months in the year 2008 (see Figure 6).  
Lake Balaton most common optical water types are 6 and 7 in the INLAND classification (turbid 
waters). The Easter basin is often classified as slightly clearer than the center of the lake. The west 
part is occasionally assigned to class 4. All the spatial pattern agree with the results from other 
investigations (Palmer et al, 2014). In the GLASS 5C classification, the eastern part remains more 
or less stable (always on lower classes), but the west and center parts are moved to central 
classes (not so turbid), and in general there is less variability. 
Monthly averages confirm the turbidity of the lake in the INLAND classification (Figure 7) and the 
assignment of less turbid classes in the GLASS 5C classification (Figure 8). Yearly averages follow 
the same trend (Figure 9). 
 

 

 

Figure 7. Lake Balaton daily examples of the INLAND (left) and GLASS (right) OWT 
classifications 
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Figure 8. Monthly averages of the dominant class, INLAND 7C  
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Figure 9. Monthly averages of the dominant class, GLASS 5C 

 

 

Figure 10. Yearly average (2008) of INLAND 7C and GLASS 5C dominant class 
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Lake Constance 

For Lake Constace 15 daily images were processed and results for the two classifications are 
shown in Figure 10 and Figure 11. In the INLAND 7C, the lake is assigned to classes 2 or 3 most 
of the year, excluding the summer months, when the dominant class appears to be 1. That would 
mean that the status of the lake in in general of clear waters, with some chlorophyll concentrations 
during spring and late summer. This theory confirms quite well in the GLASS 5C classification, with 
a nice correspondence with the previous classification showing minimum classes during the 
summer months, increasing classes during spring and early autumn, but stressing the deep, clear 
water character of the lake throughout the year.  
These observations are similar to the ones shown in Figure 12 and Figure 13. In the monthly 
INLAND classification the lake is assigned to classes 1 to maximum 3 (in the Autumn months), the 
maximum variability is given during the Spring. Within the GLASS 5c the classes drop at least one 
step, but the highest variability keeps showing during the Spring months. 
The yearly averages show a bit more of patchiness on the INLAND 7C, assigning most of the lake 
to classes 2 and 3, while GLASS 5C assigns the lake to class 1. Both cases remark the clearness 
of the lake and the low variability in the quality of the water throughout the year 
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Figure 11 Lake Constance daily examples of the INLAND OWT classification 
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Figure 12 Lake Constance daily examples of the GLASS OWT classification 



 
 
Global Lakes Sentinel Services (313256) 

 

63 

 

Figure 13 Monthly averages of the dominant class, INLAND 7C 
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Figure 14 Monthly averages of the dominant class, GLASS 5C 

 

Figure 15 Yearly average (2008) of INLAND 7C and GLASS 5C dominant class 
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Comparison with in situ data 

Two days of April 2007, the 13th and the 20th, had spectrum in situ data available, and it was used 
to compare with the shape spectra of the INLAND 7C and GLASS 5C classifications. In some 
cases, there is also the Coast Color AC derived spectra available and it was used to compare with 
the in situ data too.  
 
The number beside the in situ or CC lines in the legend makes reference to the class_sum value. 
This should be expected to be high when the in situ/CC class is very similar to one of the spectrum 
classes. Unfortunately, this is not always true. Generally, a class_sum less than 1 or close to 0 is 
an indication of a poor match to the OWTs, but this could be for several reasons.  One reason is 
that the type to which it belongs is not represented. In this case, there is a 'black hole' in the OWT 
system for this type. Another reason could be that there is enough noise in the satellite Rrs to 
impair membership. This is a significant problem especially for the red/NIR bands as they are the 
noisiest (along with bands at 412nm). This means that band choice could be a factor if it is known 
that the scene(s) have problems in one or more bands.   
The INLAND 7C plots show that the in situ data is assigned to classes 2 or 3, as shown in the 
figures above (Figure 11-15) The CC results are closer to class 1. The GLASS 5C in situ data is 
more focused on class 2 and eventually 3; with CC results classified as class 1 or 2. 

 
 

INLAND 7C GLASS 5C 
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2007-04-13_09-45-00 

  

2007-04-13_10-40-00 
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Lake Peipsi 

Lake Peipsi is a shallow lake very influence by the population around it. That makes this lake quite 
vulnerable to eutrophication, and chlorophyll concentration values in the lake are generally high. 
This fact gives the lake a greenish colour. 
 
Six daily OWT images are shown in Figure 14. All cases of the INLAND 7C classification show a 
lake quite complex, with several classes that separate it in two clear areas, north and south 
(especially visible in the April image), but also with some cases where most of the pixels could not 
be assigned to any class probably due to cloud covering or even ice (like the image of March). The 
GLASS 5C classifications seem to be simpler and able to distinguish the north and south basins in 
the image from April.  
 
Some in situ data measured in the lake indicates that the chlorophyll concentrations ranked from 
11-16 mg m3 in the northern part of the lake at the end of April and in mid-June; while values up to 
26-35 mg m3 were found in Lämmijärv. The MERIS image from 21.06 is quite cloudy. The GLASS 
5C seems to work better showing relatively high chl. The INLAND 7C shows additionally classes 6 
& 7 in the northern part of the lake, which should mean both high chlorophyll and total suspended 
matter although in situ measured values does not indicate that. In the middle of July chlorophyll 
range goes from 22-29 mg m3, SD ~1m in the northern and middle part of the lake. Based on the 
field data, northern and middle part of the lake seems quite homogeneous, and in better 
agreement with GLASS 5C than with INLAND 7C. The 2nd August images are relatively cloudy. 
Measured chlorophyll in northern part of the lake was around 25 mg m3, being higher in the SE, as 
also seen from the INALND 7C classification. In the southern part of the lake chlorophyll was 
measured between 57-81 mg m3. In the middle of Sept, in situ measured of chlorophyll ranges 
from 20-30 mg m3 in the northern part  of the lake, SD 1.3-2m, therefore the GLASS 5C seems 
more realistic. 
 
Better understanding of lake can be observed in the monthly aggregations (Figure 15 and Figure 
16). Again the north and south division is visible in both classifications, but it is more consistent in 
the INLAND 7C. In the GLASS 5C, only the image from April shows this distinction and it is too 
homogeneous the rest of the months, assigning almost all pixels to class 3. As seen from the in 
situ data, there was not high cyanobacteria bloom in the northern part of the lake in 2008. 
Chlorophyll was lower in March-June and higher during July to September, this is better captured 
from the INLAND 7C classification. This classification as well shows better the N-S gradient in the 
lake, where northern part is „clearer“ and the southern has higher chlorophyll & TSM load. 
Additionally we might expect a different water type in the SW part of Peipsi, which is influenced by 
river inflow which is captured on the monthly averages from July-September in the INLAND 7C.  
 
The yearly aggregate shows a large variety in Lake Peipsi with the INLAND 7C. The northern basin 
includes a mixture of four OWTs. In the GLASS 5c the mixture disappears and all the lake is 
classify within class 3, with no distinction between north and south (Figure 17). NS gradient 
(northern part clearer and southern more turbid) is not visible in any of the classifications.  We 
might expect classes 4-7 in the southern part of the lake, although it shows only 3 to 6.  
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Figure 16. Lake Peipus, daily classes in INLAND 7C (left) and GLASS 5C (right) OWT 
classifications 

 

Figure 17 Monthly averages of the dominant class, INLAND 7C 
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Figure 18 Monthly averages of the dominant class, GLASS 5C 



 
 
Global Lakes Sentinel Services (313256) 

 

72 

 

Figure 19 Yearly average (2008) of INLAND 7C and GLASS 5C dominant class 
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Comparison with in situ data 

Two days 2011, 12 of May and 2 of September had spectrum in situ data available, and it was 
used to compare with the shape spectra of the INLAND 7C and GLASS 5C classifications. In some 
cases, there is also the Coast Color AC derived spectra available and it was used to compare with 
the in situ data too. 

The INLAND 7C in situ data are between classes 2 and 3; while the GLASS 5C classifies mainly 
on class 3. Concerning the CC AC spectra, is mainly classified as class 2 in the INLAND 7C and 
GLASS 5C. This confirms the observations made in the maps (Figure 16-19). The class_sum 
values for the GLASS 5C are close to 1, while the CC class_sum are even higher. Class_sum 
values are not so high in the INLAND 7C for the in situ values, but look quite good for the CC 
spectra. 
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Lake Päijänne 

Lake Päijänne is a boreal lake, which often have high CDOM absorption. , In Lake Päijänne TSM 
and Chl-a concentrations are low and CDOM is the dominant optical substance (although it is not 
very high when compared to other boreal lakes). Due to this, the reflectance of the lake is quite low 
and the lake appears dark blue. The lake is relatively deep (maximum depth almost 100 m, mean 
depth bout 16 m). However, the retention time is just over 2 years in Päijänne, so the potential 
degradation time for CDOM is quite short compared with other cases. 
In Figure 18 we observe the INLAND 7C classification result for four daily averages in the central 
part of the year, where this blue characteristic is shown quite clearly. Most of the pixels are 
classified as class 2 or class 1. The image from June is not very good, probably the cloud cover 
was extended. In the Image from September some pixels, in the shores of the lake, appear 
classified as turbid.  The main reason for incorrect classifications probably is the errors in the 
atmospheric correction (the elevated CDOM absorption causes problems for the AC). 
In the GLASS 5C classification of Figure 19, most of the pixels are classified as class 3, which 
indicates some chlorophyll concentrations, clearly opposed to the results of the INLAND 7C 
processor. We see a lot of class 2, which is good. However, other classes are also visible 
(especially 3), which is likely to be incorrect. The reason for the failure is probably AC. 
The monthly scenes shown go from May to October, in order to avoid error introduced by ice on 
the surface of the lake. In Figure 20, monthly averages confirm the assignation of the lake to clear 
water classes. During the last months of the summer the variability of the lake seems to be higher, 
with some pixels on the shore assigned to class 5. Figure 21, the monthly averages of the GLASS 
5C classification, increase the variability in all months, with pixels assigned mainly to classes 2 and 
3, but with the disappearance of the turbid water class shown in the previous classification near the 
shores. 
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Figure 20 Lake Paijanne, daily classes in INLAND 7C OWT classification 

 

Figure 21 Lake Paijanne, daily classes in GLASS 5C OWT classification 
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Figure 22 Monthly averages of the dominant class, INLAND 7C 
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Figure 23 Monthly averages of the dominant class, GLASS 5C 
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Comparison with in situ data 

Three days: 4 of June 2007, 7 of July 2007 and 29 of June 2011 had spectrum in situ data 
available, and it was used to compare with the shape spectra of the INLAND 7C and GLASS 5C 
classifications. In all cases, there is also the Coast Color AC derived spectra available and it was 
used to compare with the in situ data too. 

INLAND 7C classifies the in situ spectra in classes 2 or 3; the same for GLASS 5C. The CC 
spectra follows quite well the shape of the in situ and is also classified as class 2 or 3. To remark, 
the class_sum values are higher in GLASS 5C than it INLAND 7C, indicating a better 
representation of these type of lakes in the GLASS 5C classification. 
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Appendix 3: Spectral water types of Alpine Italian lakes for two 
atmospheric corrections 

Claudia Giardino and Mariano Bresciani 
 
The following questions were addressed in this case study: 
The OWT was applied for a subset of images where the knowledge about the performances of 
ICOL and C2R processors has been previously investigated (Odermatt et al., 2010; Bresciani et 
al., 2011). 
For the same images also the CC processor has been used, according to the workflow selected 
within the task 5.3. The OWT 6_GLaSS processor has been finally applied to both set of images 
and a qualitative evaluation of the results has been reported (Tab. 1). 
Qualitatively, for the largest lakes (from East to West; Maggiore, Como and Garda) we expect to 
find mostly class-1 (but also class 3 might occur in case of phytoplankton blooms, usually occurring 
in spring and summer). Then, we expect to find the smaller lakes classified as Class-3. However, 
since only Maggiore and Garda are “GLaSS Nearby Lakes”, we limit the evaluation to those 2 
lakes only. 
 
Table 1. Comparison of the OWT results starting from images atmospherically corrected by using two 
different processors: On left the CC, on right ICOL+C2R 

20050723 

CC
 

Icol+C2R
 

Better C2R 

20100726 

CC  Icol+C2R  

Comparabl
e results 

20100826 

CC
 

Icol+C2R  

Better CC 

 
The MERIS images L1_FSG stored with the BC ftp site have been used to further increase the 
testing of the OWT. In this case the atmospheric correction was archived with the CC processor, 
according to the workflow selected within the task 5.3. 
 
Overall (Tab. 2) the results are pretty fine for Lake Garda even the northern part is suspects as it 
should be also classified as Class-1. It seems that the in narrowest part of Garda the classification 
depend on adjacency effects. For Lake Maggiore the results are less satisfactory as many pixels 
are classified as Class-4, which is unrealistic. Similar as for the northern part of Lake Garda, the 
narrow and elongated shape of Lake Maggiore, in combination with the low signal coming from 
these clear lakes, makes tricky the correction for the atmospheric and adjacency effects. The use 
of ICOL prior to CC might improve the classification in the narrowest parts. 
 
In conclusion, the tool indicates that CC might also work for Italian Alpine lakes, but (for Maggiore) 
only with ICOL. Such a conclusion is also supported by the comparison between Rrs spectra in situ 
measured and the corresponding MERIS data of Lake Garda. The following plot show the match-
ups with in situ spectra for image data acquired in 2005 (26 July and 14 September) and on 6 May 
2008. Overall, the optical closure is good, the absolute values are in the same range (despite in 
some cases the peak of reflectance computed by CC is anticipated with respect to in situ 
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measurements) and the shape and the magnitude are both those typical of class 1. Moreover, in 
these dates, the average concentration of Chl-a was 2.31 mgm-3 (± 0.9) so, again, it seems that 
for Lake Garda the class 1 is generally suitable. 

MERIS CC (red lines) and match-ups with in situ spectra (blue lines) 
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Figure 1. Comparison of the of Rrs spectra derived from in situ measurements (blue lines) and MERIS 
images (red lines with symbols) corrected for the atmospheric effect with the CC algorithm The data 
correspond to 10 stations in the southern part of Lake Garda observed on 20050914, 20050726 and 
20080506.  
 
Table 2. OWT results for a multi-temporal set of images processed with CC 
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20050719 
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20050914 

 
20080506 

 
20090911 

 
20110410 
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20110626 

 
 

 


