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1 BACKGROUND OF THE DOCUMENT 
 

1.1 EXECUTIVE SUMMARY 

This ATBD (Algorithm Theoretical Based Document) describes the proposed algorithm for Level 2 
products that will be implemented in the SENTINEL2 Toolbox. The level2 products are derived 
from SENTINEL2 top of canopy normalized reflectance data and correspond to the following set of 
biophysical variables: LAI, (Leaf Area Index) FAPAR (fraction of absorbed photosynthetically active 
Radiation) and FVC that are essential climate variables (ECVs) as recognized by international 
organizations such as GCOS and GTOS.  

The proposed algorithm is based on methods that have already been proven to be efficient. They 
have been implemented to generate biophysical products from VEGETATION, MERIS, SPOT, and 
LANDSAT sensors. It mainly consists in generating a comprehensive data base of vegetation 
characteristics and the associated SENTINEL2 top of canopy (TOC) reflectances. Neural networks 
are then trained to estimate the canopy characteristics from the TOC reflectances along with set 
corresponding angles defining the observational configuration.  

This ATBD is derived from the ones proposed in the frame of previous ESA projects: 

 S2SPAD, Contract ESRIN #21450/08/I-EC: first ATBD delivered, theoretical performances 
only. 

 VALSE2 (VALidation of SEntinel 2 – ESTEC A0/1-6958/11/NL/BJ): validation of the 
S2SPAD algorithm over experiment ground campaigns (airborne acquisitions to simulate 
S2-like data). Improvements of the algorithm (inclusion of acquisition geometry and 
illumination conditions) 

 SL2P (Simplified L2 Product Prototype Processor – ESTEC AO/1-7455/13/NL/BJ): 
refinement of the optimal set of band inputs with regards to atmospheric noise, set up of a 
definition domain flag, and uncertainty estimates. 

 
The modification with regards to SL2P latest version concern the fact that the actual SENTINEL2 
spectral sensitivity (in replacement to the waveband centre values) were taken into account when 
generating the training database. We also compared two ways of taking into account the geometry 
of acquisition: either as inputs of the neural nets, or by interpolating values between multiple neural 
nets trained on specific geometries of acquisition. We concluded that the two methods led to 
similar results. 

 

1.2 SCOPE AND OBJECTIVES 

SENTINEL2 is part of the GMES space segment. Users include the scientific community as well as 
other stakeholders including policy makers, the proper information required for several 
applications, as detailed in the Mission Requirement Document (Gascon and Berger 2007). For the 
exploitation of MSI (Multi Spectral Instrument) data, ESA develops the Sentinel-2 Toolbox which 
consists of a rich set of visualisation, analysis and processing tools products.The objective of this 
document is to provide a detailed description and justification of the algorithm proposed for the 
SENTINEL2 Toolbox level2 biophysical variables algorithm.  
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1.3 CONTENT OF THE DOCUMENT 

This ATBD document is split in 3 main sections: 

1. Algorithm Justification and overview. This section contains: 

 A definition of the proposed products. 

 A brief description of SENTINEL2 sensor from which the products will be derived 

 A justification of the algorithm selected 

 The outline of the algorithm. 

2. Description of the algorithm. This section contains: 

 The required inputs and outputs provided by the algorithm. 

 The retrieval technique used: neural network techniques constitute the core of the 
operational algorithm. Quality indicators are also provided. 

3. Recommendations for the algorithm implementation. This section contains details on 
how the algorithm could be implemented in the processing chain. 

 

1.4 SYMBOLS AND ACRONYMS 

µg Microgram 

ALA Average Leaf Angle 

ANN Artificial Neural Network 

ATBD Algorithm theoretical based Document 

BHR Bi-Hemispherical Reflectance 

BRF Bidirectional reflectance factor 

BRDF Bidirectional Reflectance Distribution Function 

Bs Soil Brightness 

Cab Chlorophyll content in the leaf (µg.cm-2) 

Cbp Content of brown pigments in the leaf (no units) 

CCC Canopy Chlorophyll Content 

Cdm Content of dry matter in the leaf (g.cm-2) 

CEOS Committee for Earth Observation Satellite 

ECV Essential Climate Variable 

FAPAR Fraction of Absorbed Photosynthetically Active Radiation 

CWC Canopy Water Content 

FVC Fraction of vegetation cover 

GCOS Global Climate Observation System 

GMES Global Monitoring of Environment and Security 

GTOS Global Terrestrial Observation System 



S2 Toolbox Level 2 Product algorithms 

Version 1.1  
 

.   

Issue:     V1.1 Date: 02.05.2016  Page: 10 of 53 
 

L2 Level 2 product 

L3 Level 3 product 

LAI Leaf Area Index 

MODIS Moderate Imaging Spectrometer 

N Structural parameter of the leaf (unitless) 

NIR Near Infrared 

NNT Neural Network Technique 

RMSE Root Mean Square Error 

RTM Radiative Transfer Model 

SPOT Satellite Pour l’Observation de la Terre 

SWIR Short Wave Infra red 

TOA Top of Atmosphere 

TOC Top of Canopy 

VI Vegetation Index 
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2 ALGORITHM JUSTIFICATION AND OVERVIEW 

2.1 THE CONSIDERED PRODUCTS AND THEIR DEFINITIONS 

The considered products correspond to the actual vegetation biophysical variables defined below. 

2.1.1 Leaf Area Index (LAI) 

LAI is defined as half the developed area of photosynthetically active elements of the vegetation 
per unit horizontal ground area. It determines the size of the interface for exchange of energy 
(including radiation) and mass between the canopy and the atmosphere. This is an intrinsic canopy 
primary variable that should not depend on observation conditions. LAI is strongly non linearly 
related to reflectance. Therefore, its estimation from remote sensing observations will be strongly 
scale dependent (Garrigues et al. 2006a; Weiss et al. 2000). Note that vegetation LAI as estimated 
from remote sensing will include all the green contributors, i.e. including understory when existing 
under forests canopies. However, except when using directional observations (Chen et al. 2005), 
LAI is not directly accessible from remote sensing observations due to the possible heterogeneity 
in leaf distribution within the canopy volume. Therefore, remote sensing observations are rather 
sensitive to the ‘effective’ leaf area index, i.e. the value that would produce the same remote 
sensing signal as that actually recorded, while assuming a random distribution of leaves. The 
difference between the actual LAI and effective LAI may be quantified by the clumping index (Chen 
et al. 2005) that roughly varies between 0.5 (very clumped canopies) and 1.0 (randomly distributed 
leaves). 

2.1.2 FAPAR 

FAPAR corresponds to the fraction of photosynthetically active radiation absorbed by the canopy. 
The FAPAR value results directly from the radiative transfer model in the canopy which is 
computed instantaneously. It depends on canopy structure, vegetation element optical properties 
and illumination conditions. FAPAR is very useful as input to a number of primary productivity 
models based on simple efficiency considerations (Prince 1991). Most of the primary productivity 
models using this efficiency concept are running at the daily time step. Consequently, the product 
definition should correspond to the daily integrated FAPAR value that can be approached by 
computation of the clear sky daily integrated FAPAR values as well as the FAPAR value computed 
for diffuse conditions. To improve the consistency with other FAPAR products that are sometimes 
considering the instantaneous FAPAR value at the time of the satellite overpass under clear sky 
conditions (e.g. MODIS), a study was proposed to investigate the differences between alternative 
FAPAR definitions (Baret et al. 2003). Results show that the instantaneous FAPAR value at 10:00 
(or 14:00) solar time is very close to the daily integrated value under clear sky conditions.  

FAPAR is relatively linearly related to reflectance values, and will be little sensitive to scaling 
issues. Note also that the FAPAR refers only to the green parts (leaf chlorophyll content higher that 
15µg.cm-2) of the canopy. 

2.1.3 Cover fraction (FVC) 

It corresponds to the gap fraction for nadir direction. FVC is used to separate vegetation and soil in 
energy balance processes, including temperature and evapotranspiration. It is computed from the 
leaf area index and other canopy structural variables and does not depend on variables such as 
the geometry of illumination as compared to FAPAR. For this reason, it is a very good candidate 
for the replacement of classical vegetation indices for the monitoring of green vegetation. Because 
of its quasi-linear relationship with reflectances, FVC will be only marginally scale dependent 
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(Weiss et al. 2000). Note that similarly to LAI and FAPAR, only the green elements (leaf chlorophyll 
content higher that 15µg.cmP

-2
P) will be considered. 

2.1.4 Canopy chlorophyll content (CCC) 

The chlorophyll content is a very good indicator of stresses including nitrogen deficiencies. It is 
strongly related to leaf nitrogen content (Houlès et al. 2001). This quantity can be calculated both 
at the leaf level and at the canopy level by multiplication of the leaf level chlorophyll content by the 
leaf area index. In this case it is obviously an intrinsic secondary variable. Recent studies tend to 
prove that this product could be of very high interest in primary production models because it partly 
determines the photosynthetic efficiency (Green et al. 2003). In addition, studies have 
demonstrated that a direct estimation of CCC  is more robust and accurate than an estimation 
based on the product of the individual estimation of LAI and CBabB (Weiss et al. 2000). Therefore, the 
estimation of CCC has been preferred to that of the leaf chlorophyll content. 

2.1.5 Canopy water content (CWC)  

Since radiation is absorbed significantly by water in the near and middle infrared, the spectral 
configuration of SENTINEL2 allows accessing this variable. Water represents between 60 % and 
80% of the living plant mass. The variable that is the best related to the remote sensing signal is 
defined as the mass of water per unit ground area (g.m-2). One of the difficulties in retrieving this 
variable is the possible confusion with soil moisture effects. Canopy water content (CWC) is 
proposed here as a possible candidate in the list of SENTINEL2 products. 

 

2.2 INSTRUMENT CHARACTERISTICS 

SENTINEL2 is an optical sensor aboard a polar platform providing helio-synchronous 
observations. The characteristics of the orbit are presented in Table 1. 

 

Acronym Values 

Orbit altitude (km) 786 

Repeat cycle (days) 10 

Period (min) 100.7 

Inclination (°) 98.62° 

Equatorial descending node crossing time (hr) 10:30 

Maximum scan angle 20.6° 

 

Table 1. SENTINEL2 orbit characteristics and maximum scan angle 

The 13 characteristics of the 13 bands are presented in Table 2. Bands B1, B2, B9 and B10 are 
more dedicated to atmosphere or cloud. The 9 remaining bands may be used for vegetation 
characterization. They are all with 20 m spatial resolution, except B4 and B8 that have a 10 m 
resolution. This will thus need binning these bands to provide the 20 m spatial resolution. The 
detailed spectral characteristics are presented in Figure 1. 

 

Acronym 
Central 

(nm) 
Width 
(nm) 

Spatial 
resolution (m) 

Potential 
Applications 

B1 443 20 60 Atmosphere 

B2 490 65 10 Atmosphere 

B3 560 35 10 Vegetation 

B4 665 30 10 Vegetation 

B5 705 15 20 Vegetation 
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B6 740 15 20 Vegetation 

B7 783 20 20 Vegetation 

B8 842 115 10 Vegetation 

B8a 865 20 20 Vegetation 

B9 945 20 60 Atmosphere 

B10 1375 30 60 Atmosphere 

B11 1610 90 20 Vegetation 

B12 2190 180 20 Vegetation 

 

Table 2. SENTINEL2 spectral characteristics: band centre and width, spatial resolution and use. 

 

 

Figure 1. SENTINEL2A MSI spectral response (Top: Visible – near Infrared, Bottom: ShortWave 
Infrared) from ESA SENTINEL online web site. 

 

2.3 JUSTIFICATION FOR THE ALGORITHM SELECTION AND DESIGN 

The requirements for the selection and design of the algorithm proposed in this study for 
SENTINEL2 level 2 products are presented below: 

https://sentinel.esa.int/documents/247904/685211/Sentinel-2A+MSI+Spectral+Responses
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 Explicit use of all the SENTINEL2 pertinent spectral information. The spectral sampling 
of SENTINEL2 provides potentially a higher level of information on canopy structure and 
optical properties of its elements as compared to the simple use of the classical red and 
near infrared bands implemented in most other retrieval approaches. The exploitation of the 
adequate SENTINEL2 spectral information should hopefully allow to restrain the solution 
space and lead to a more robust and accurate retrieval as compared to high resolution 
sensors such as SPOT or LANDSAT. 

 Accuracy of the retrieval and computational efficiency. A review of current state of the 
art for the estimation of biophysical variables from remote sensing data (Baret and Buis 
2007) was proposed. It shows that among the several retrieval algorithms, those based on 
the minimisation of the distance in the space of canopy variables provides the best 
accuracy on retrievals while being very efficient computationally wise. Therefore, 
techniques based on neural networks are selected in this study. In addition, their limitation 
mainly driven by the necessity to have a fixed number of input variables would not 
constitute any problem to process SENTINEL2 data up to level 2, if the geometrical 
configuration is input explicitly. Note that such techniques have already been implemented 
and lead to good performances of the retrieval (Weiss et al. 2002); (Baret et al. 1997); 
(Combal et al. 2002); (Kimes et al. 2002) (Bacour et al. 2006). It requires a learning process 
achieved over a training data base. 

 No use of ancillary data difficult to derive at high spatial resolution. As a matter of 
fact, retrieval of surface characteristics from remote sensing observations is an ill posed 
problem, leading to uncertainties in the solution (Combal et al. 2002). The only way to 
regularize the problem is to use ancillary information or additional constraints on the 
solution to reduce its domain of variation. Spatial and temporal constraints may be used to 
regularize the solution as demonstrated by (Lauvernet et al. 2008) and (Kötz et al. 2005; 
Kötz et al. 2007) because we are mainly considering LEVEL2 products. Further, because of 
the generic (global) nature of the proposed vegetation products, no specific ancillary 
information can be efficiently used: the absence of reliable and regularly updated land 
cover map at a spatial resolution similar to that of SENTINEL2 from which some vegetation 
architecture features could be derived prevents from tailoring specific algorithm for each of 
the land cover classes. The proposed algorithm will therefore rely only on SENTINEL2 
instantaneous observations. As a consequence, the algorithm may provide reasonably 
good estimates over all the cases, but certainly poorer performances as compared to 
algorithm specific to a given surface type for this particular surface type, although this 
specific algorithm would fail over most of other cases. Nevertheless, it could be possible to 
develop such specific algorithms and use them when the land cover is known. It would be 
also possible to develop corrections of the generic algorithm that will be specific to a 
surface type. Note also that the differences between a specific and a generic algorithm will 
depend on the considered variables: large differences are expected for LAI, while less 
sensitivity is expected for FAPAR and FVC. The genericity of the algorithm will obviously 
have important consequences on the generation of the training data base.  

 Generation of the training data base. The training data base should sample all the 
vegetation types and conditions that can be observed from SENTINEL2 over land surfaces. 
In addition it should reflect the uncertainties in the reflectance values as observed by 
SENTINEL2. Ideally, the training data base should therefore be made of SENTINEL2 
observations that are paired with accurate ground measurements of the considered 
biophysical variables. However, because of the uncertainties attached to the ground 
measurements and the difficulty associated to the collection of such measurements within a 
large range of vegetation types and conditions, this simple ‘experimental’ approach is 
currently not feasible. Therefore, the use of simulations by radiative transfer models would 
be preferable. The radiative transfer model should simulate within a good accuracy the 
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canopy reflectance as observed within SENTINEL2 bands and geometry over most 
vegetation types and conditions that can be observed over the Earth. A particular attention 
should be brought on: 

 the leaf optical properties, particularly regarding the effect of the chlorophyll 
and water content on reflectance and transmittance, 

 the background reflectance that should include in addition to a large variety 
of soils, litter and senescent vegetation. 

 Quality assessment. Quantitative and qualitative indicators should be attached to the 
product so that the user could properly ‘weigh’ the data within its application according to 
the confidence he puts on. This could be achieved within several ways: 

o Quality of the TOC reflectance used as input to the algorithm. This would simply 
correspond to the replication of indicators produced previously such as cloud 
occurrence, sensor problem and atmospheric correction. 

o Additional indicators based on: 

 The input out of range. This should indicate that either the input reflectances 
have problems (cloud contamination, poor atmospheric correction, shadow) 
or anyway that the application of the algorithm could result in unreliable 
results. This would be common to all the derived products. 

 Output out of rage: flags raised when the product appears to be out of the 
nominal range of variation.  

 Product uncertainty. The algorithm provides a quantitative estimation of the 
uncertainty associated to the product.  

2.4 ALGORITHM OUTLINE  

For the reasons exposed above, it is proposed to use neural networks for the SENTINEL2 

biophysical variables estimation. Once the neural network inputs and outputs are defined, it is 

very easy to change the network coefficients to take advantage of recent advances in the 

generation of the training data base. The processing chain will therefore be very easily upgraded if 

it designed for, i.e. if coefficients are stored as parameters in a well identified and documented 

manner. 

For each product, one particular network will be calibrated. Two main steps are foreseen (Figure 
2): 

 Training the neural network.  

 Operational use of the neural network. 
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Figure 2. Flow chart showing how the products ( V̂ ) are generated operationally. ANN corresponds to 
an Artificial Neural Network characterized par its structure and its coefficients (synaptic weights and 
bias); RTOC corresponds to the SENTINEL2 Top Of Canopy reflectance used in the operational mode 
and V correspond to the biophysical variable in the training data base and estimated by running the 
ANN over the simulated SENTINEL2 TOC reflectance and geometry. 

2.4.1 Training the neural network 

This process consists mainly in three steps: 

 Generating training data base 

 Defining the neural network architecture 

 Calibrating the network. 

2.4.1.1 Generation of the training data base 

The generation of the training data base corresponds to the most critical issue to be solved. It 
should be constituted of a representative set of top of canopy reflectances and incorporate prior 
information on the distribution of the input variables. The model used to simulate the learning 
database should represent a good compromise between the level of accuracy and the complexity 
of setting up the simulations: number and distribution of the input variables to describe the canopy 
as well as computer ressources and time. 

2.4.1.2 Designing network architecture 

It consists in defining the optimal structure (typically the number of layers and the number of 
neurons per layers) as well as possible transformations of the inputs and outputs such as 
normalization. 

2.4.1.3 Calibrating the network 

This last step corresponds to the actual training, i.e. tuning the coefficients (synaptic weights and 
bias) that provide the best estimates of the biophysical variables. Dedicated tools are available to 
achieve this training, and this issue will be detailed later on. 

2.4.2 Operational use of the neural network 

Once the neural network is trained, it will be run in operational mode. 3 networks will produce in 
parallel estimates of the considered biophysical variables: LAI, FAPAR, Fcover. Additionally, 
quality assessment indicators will also be generated: 

SENTINEL2
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 Input consistency with the training data base. This represents the consistency of the 

measured SENTINEL2 input reflectances with those used in the training data base. The 

training definition domain of the inputs is therefore identified, and a flag will be raised when 

observations are outside the training definition domain. 

 Output consistency with expected range. This represents the consistency of the actual 

network outputs (the biophysical variables) with those used in the training data base.  

 Quality indicators: These are a replication of the previously computed quality indicators, 

including those related to the atmospheric correction and cloud filtering. 
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3 ALGORITHM DESCRIPTION 
In this section, the algorithmic elements are described, including: 

 The definition of the inputs and outputs, 

 The radiative transfer model used to generate the learning data base 

 The inversion technique 

 The quality assessment 

 

3.1 INPUTS AND OUTPUTS 

3.1.1 Inputs 

The neural networks will apply on instantaneous top of canopy reflectance data (level 2). All the 
following inputs are required for each considered pixel. 

3.1.1.1 Top of canopy reflectance. 

Individual daily observations will be used. Reflectances should be expressed in terms of 
reflectance factor, mainly varying between 0 and 0.7 for most land surfaces outside hot-spot or 
specular directions and snow or ice cover. Only nine bands are used: B3, B4, B5, B6, B7, B8a, 
B11 and B12. This band selection is derived from the VALSE2 and SL2P project results.  

Acronym Central 
(nm) 

Width 
(nm) 

Spatial 
resolution (m) 

B3 560 35 10 

B4 665 30 10 

B5 705 15 20 

B6 740 15 20 

B7 783 20 20 

B8a 865 20 20 

B11 1610 90 20 

B12 2190 180 20 

 

Table 3. SENTINEL2 spectral characteristics: band centre and width, spatial resolution of the 8 
selected bands used 

. 

 

3.1.1.2 Geometry of acquisition 

Similarly to the spectral information content of the reflectance signal, the directional information 
must also be taken into account when training the neural networks. The cosine of the sun zenith 

angle (s), view zenith angle (v) and relative azimuth angle () at the time of the image acquisition 
are required. The geometry of acquisition can be taken into account in two ways when using the 
neural nets: 

1. Global Neural Network: the cosine of the sun zenith angle (s), view zenith angle (v) and 

relative azimuth angle () are used as inputs to the neural networks. The simulations of the 
training data base must take into account the orbit characteristics of SENTINEL2 to 
simulate the satellite angular sampling. 
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2. Interpolated Neural Networks: the geometry of acquisition is not used as input to the neural 
networks: it is taken into account by training neural networks with simulations run for fixed 
values of the triplet (cos(𝜃𝑠) , cos(𝜃𝑣) , cos(𝜑)): for each variable, a number N of neural 
networks is calibrated, each of them trained with a single geometric condition. When 
deriving the biophysical variable for a given sensor acquisition, the different neural 
networks are run, and the final product is estimated by interpolating the different outputs 
corresponding to fixed geometries into the actual sensor view angles. 

We compared the results between these two implementations for LAI estimation. All the neural 
networks were trained with the same drawing of PROSAIL input variables (Table 5 and Table 6), 
except for the angles. For each simulation, the global neural net was trained with a uniform random 
drawing of the date and location, allowing to derive, thanks to the orbit characteristics of 
SENTINEL2, the corresponding geometry. For the interpolated Neural Networks, we trained 99 
NNets (respectively, 27) with a single geometry configuration corresponding to sun zenith angles 
between 25° and 35° by step of 5°, view zenith angles between 5° and 15° by steps of 1° 
(respectively 5°), and relative azimuth angle between 180° and 210° by steps of 5°, which is in 
agreement with S2 geometry (see section 3.3).  

Then, we simulated an independent test database using the same radiative transfer model 
(PROSAIL) with a uniform random drawing of the date and location. From one hand, we applied 
the global neural network, by using the actual geometry as input. From the other hand, we applied 
the 99 (respectively 27) NNETs and interpolated the obtained values at the actual geometry value 
(Figure 3). Results show that the performances of the 3 methods are comparable (Correlation 
coefficients of 0.83 for the 3, RMSE between 0.68 and 0.70). Moreover, the scatterplots between 
the global NNets and the interpolated ones shows a very good agreement (R²=0.98), with few 
points a little more scattered when degrading the resolution of the view angle. This result also 
show that the accuracy required on the view angle is not critical. As the results are very similar, we 
conclude that it is much simpler to use the global NNet for the implementation in the SENTINEL2 
toolbox. 

However, the determination of the viewing angles for a given pixel may not be currently an easy 
task when using current SENTINEL2 data. Indeed, there is one viewing configuration associated to 
each of the 12 detectors for a given band (making 8*12 view angles per pixel). The current S2 L1C 
data format does not provide the information on the detector associated to the reflectance in case 
of overlapping between two detectors. Therefore, it is required to use an approximation of the view 
angle, which will not degrade the results as shown in (Figure 3, bottom). We propose to use the 
same approximation as in the sen2cor processor that is also implemented in the S2Toolbox to 
perform atmospheric corrections.  
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Figure 3. Comparison between the performances of a global neural network versus interpolated 
ones. Top: theoretical performances against a simulated test database, Bottom: scatterplot between 
interpolated and global neural network LAI estimates in the test database. Two interpolated neural 
networks are considered: 1°step or 5° step. 

 

 

3.1.2 Outputs 

The outputs will be provided by application of the algorithm over each pixel. They include the 
neural network derived LAI, FAPAR, FVC,CCC and CWC values as described previously. The 
proposed range of variation and resolution are presented in Table 4. In addition to the product 
values, quality flags are also generated. 

Product Unit Minimum Maximum resolution 

LAI mP
2P.mP

-

2P
 

0 8.0 0.01 

FAPAR - 0 1.0 0.01 

FVC - 0 1.0 0.01 

CCC g/cm² 0 600 1 

CWC µg/cm² 0 0.55 0.0025 

 
Table 4: Minimum, maximum values and associated resolution for the five products. 

 

3.2 REFLECTANCE MODELS 

As previously described, the algorithm is based on the training of neural networks for each product. 
Emphasis will therefore be put on the generation on the training data base with attention on the 
assumptions associated to the used models. Physically based radiative transfer models are 
considering 3 main components that will be described separately in the following: 
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 The leaf optical properties 

 The canopy structure 

 The background reflectance 

3.2.1 Leaf optical properties 

To estimate the chlorophyll content from canopy reflectance, chlorophyll content has to be explicitly 
introduced into the radiative transfer model to be used. Because of its versatility and performances, 
the PROSPECT model (Jacquemoud and Baret 1990) with the updated absorption coefficients 
proposed by (Fourty and Baret 1997) appears therefore to be a good candidate.  

Note that the PROSPECT model considers the leaf as a lambertian surface. Sanz et al (1997) 
showed that leaves were mainly characterized by a specular behaviour in addition to an important 
diffuse scattering process that takes place within the leaf. These authors demonstrated that, except 
in the specular direction, the lambertian approximation was valid in all other viewing directions. In 
addition, PROSPECT assumes that the optical properties of both leaf faces are equal.  

Several authors (Fourty and Baret 1997; Jacquemoud and Baret 1990; Newnham and Burt 2001) 
have successfully validated the model over broadleaf types. In addition, the PROSPECT model 
provides a reasonable description of the optical properties of the needles, even though the basic 
assumptions associated to the plate model are obviously violated (Zarco-Tejada et al. 2001). The 
following variables are required as input to the PROSPECT model: 

 N leaf mesophyll structure index. It varies between 1.0 for the most compact leaves 
(such as young cereal leaves) up to 3.5 for thick leaves with well developed spongy 
mesophyll or event senescent leaves having disorganized mesophyll with large amount of 
air spaces. 

 CBabB Leaf Chlorophyll content (µg.cmP

-2
P). It actually corresponds to the content of 

chlorophyll a, chlorophyll b and carotenoids (Fourty and Baret 1997). Note that chlorophyll 
a and b are generally strongly correlated. The same is observed between chlorophyll a and 
b and carotenoids, particularly for medium to large chlorophyll content values. It basically 
varies between 0 to 90 µg.cmP

-2
P. 

 CBdmB Leaf dry matter content (g.cm P

-2
P). Dry matter absorbs over the whole spectral 

domain, and its effect is maximal in the near infrared region. The leaf dry matter content is 
also called the specific leaf weight (SLW) which is also the inverse of the specific leaf area 
(SLA) used by physiologists.  

 CBwB Leaf water content (g.cmP

-2
P). Several studies showed that the relative water content 

could be approximated to a value close to 75 % for the green leaves. This allows linking the 
water (CBwB) and the dry matter (CBdmB) contents together. 

 Cbp. Leaf brown pigment content (relative units). Baret et al (2002) reported that 
chlorophyll and brown pigments are exclusive, i.e. green and non green elements 
(senescent leaves, branches, stems) are spatially dissociated. The canopy structure model 
should therefore include at least green and non green elements. Green leaves will have no 
brown pigments and senescent leaves will have no chlorophyll pigments.  

Bacour et al (2002) and Le Maire (2002) have analysed the sensitivity of the radiometric response 
both at the leaf and canopy level. They showed that the chlorophyll content, the dry matter and the 
structure index are the main drivers of the optical properties in the visible to near infrared spectral 
domain. 
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3.2.2 Canopy radiative transfer models 

The use of pure 3D models such as DART (Gastellu-Etchegorry et al. 1996) or DISORD (Myneni et 
al. 1992) for simulating a very large range of situations appears very appealing. Even though, the 
use of detailed 3D models that mimics actual canopy architecture and combined with ray tracing 
(Govaerts and Verstraete 1998), (España et al. 1999) or radiosity (Gerstl and Borel 1992), (Borel et 
al. 1991), (Chelle et al. 1997), (Soler et al. 2001) radiative transfer description and applied to a 
representative sample of biomes and conditions would be ideal. However, it might be difficult to 
implement for two practical reasons: 

 The necessity to describe a very large range of realistic canopy architectures. This requires 
a huge effort in canopy architecture and optical properties measurements at ground level. 

 The time associated to the model computation. 

It is thus proposed to use a reflectance model that is computer efficient and uses a small number 
of input variables. The SAIL radiative transfer model (Verhoef 1984, 1985) is widespread in the 
remote sensing community for the estimation of vegetation biophysical variables. The canopy is 
described as a homogeneous medium where leaves are randomly distributed. The SAIL model 
uses a limited number of structural variables in addition to leaf reflectance and transmittance and 
soil back ground reflectance.  

 Leaf area index (LAI),  

 the average leaf angle (ALA), characterizing the leaf angle distribution that will be 
described by an ellipsoidal distribution (Campbell 1986). Note that a spherical distribution 
corresponds to an average angle close to 57°, 

 the hot spot parameter (HOT) (Kuusk 1991). 

3.2.3 Background reflectance model 

The background reflectance corresponds to all the non green materials that constitute the last 
bottom layer in the canopy. Following the definition of the products, all the green vegetation layers 
have to be accounted for in the computation of these variables. Therefore, if the understory is 
green (including lichens and moss), it will not be considered as the background here and will be 
included within the green vegetation layer. The background reflectance may thus correspond to 
soil, litter, water and snow. However, because of the particularities of water and snow 
backgrounds, these will not be included in this study. Indeed, when these particular cases will be 
encountered when applying the algorithm on SENTINEL2 data, the ‘input out of range’ quality 
indicator should be flagged.  

3.2.3.1 The background brightness concept 

The background reflectance, for a given wavelength, will depend on the background type (snow, 

soil type, litter, water), geometrical illumination and view conditions ( ), roughness (z) or moisture 
(H). Note also that there is a continuum between soil background and water (which is always 
above soil!). 

The approach used here to describe the background reflectance properties is based on the 
brightness concept allowing confounding the effect of geometrical conditions, roughness and 
moisture within a single parameter that will be assumed not to depend on wavelength.  

The background reflectance ),,,( kjib zH  for any wavelength , observation geometrical 

configuration i , moisture HBjB and roughness zBkB is assumed proportional to the reflectance 
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background for the same wavelength  but different observation geometrical configuration l , 

moisture HBmB and roughness zBnB: 

),,,(),,,( nmlbkji zHBszH
b

   Equation 1 

where Bs is a brightness parameter that does not depend on wavelength , but depends on all the 

other factors (, H, z). This convenient property is a consequence of the well known soil line 
concept (Baret et al. 1993) stating that a linear relationship exists between the reflectance of soils 

(and litter) in two wavelengths B1B and B2B when either the roughness, moisture or illumination or 
view directions vary: 

),(),,,(),(),,,( 212211  bzHazH kjibkjib   Equation 2 

This property could be written for another set of sun and view directions:  

),(),,,(),(),,,( 212211  bzHazH nmlbnmlb   Equation 3 

Replacing in Equation 3 ),,,( 1 kjib zH  and ),,,( 2 kjib zH  by their expression derived 

from Equation 1 and Equation 2: 

),(),,,(),(),,,( 212211  bzHBsazHBs nmlbnmlb   Equation 4 

Identifying Equation 4 to Equation 3 provides the condition under which Equation 2 is valid:  

),(),( 2121  bbBs   Equation 5 

which is true either for 1Bs  or 0),( 21 b . Experimental and theoretical results (Baret et al. 

1993) show that the soil line intercept, ),( 21 b , is generally very small in comparison to the 

background reflectance value. For example, in the red and near infrared bands, 

1.0),(0  nirredb  . Similarly, experimental evidences, when referring to a standard situation (dry 

soil, medium roughness, no hot-spot configuration), 3.13.0 Bs . Therefore, the brightness concept 

is generally valid and has already been used extensively in past studies (Weiss et al. 2002); 
(Bacour, Jacquemoud et al. 2002). 

The brightness concept allows describing the spectral variation of a given background when the 
geometrical configuration, moisture or roughness varies with two inputs: 

 The brightness parameter (Bs) that is independent on wavelength 

 A reference soil reflectance spectrum.  

3.2.3.2 Background reference spectral variation 

The background spectral database must represent the different background types with special 
attention to soils and litter.  

Note that the litter corresponds to an important background, particularly over forest areas. The 
spectral signature of litter is very close to that of the soil as noticed by several studies (Asner et al. 
1998). Crop residues and natural vegetation residues may have also important contribution to the 
reflected signal during specific seasons. Similarly to litter, the reflectance of vegetation residues is 
also very comparable to that of soil background (Gausman et al. 1975), (Biard and Baret 1997), 
(Chen and McKyes 1993). Few litter and vegetation residues were measured at the laboratory to 
get some reasonable representation of these background types. Because of the similarity between 
litter, residues and soil reflectance, these are finally aggregated within the ‘soil’ background 
category.  
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3.3 GENERATION OF THE TRAINING DATABASE 

The training data base is generated in three steps: 

 Generation of the data base containing the input radiative transfer model variables 

 Generation of the corresponding top of canopy reflectance for the 8 SENTINEL2 bands 
considered 

 Addition of uncertainties to the simulated top of canopy reflectance values previously 
simulated. 

3.3.1 Radiative transfer model 

The top of canopy reflectances are simulated with the PROSPECT+SAIL model described earlier 
(Figure 4). The coupled model allows as well the computation of the secondary biophysical 
variables such as FVC, FAPAR. The model inputs are: 

 the geometrical configuration of illumination and observation (i.e. the solar and view zenith 

angles, BsB and BvB, and the relative azimuth), derived from the SENTINEL2 orbit 
characteristics and swath, 

 the background reflectance spectrum, as described earlier, 

 the primary biophysical variables related to leaf optical properties (N, CBabB, Cw, CBmB, and CBbpB) 
and to the canopy structure (LAI, ALA, HOT, and Bs). Their associated distribution law will 
be specified hereafter. 

 

 

Figure 4: The coupled PROSPECT+SAIL model to generate the training database made of TOC 
reflectances and corresponding biophysical variables. 

3.3.2 Distribution of the vegetation input variables 

This is the most delicate step in the generation of the training data base. As a matter of fact, the 
training data base has to reflect the actual distribution of the vegetation types over the Earth’s 
surface. The variable distributions are derived from available information on the actual distribution 
of the variables. Table 5 presents the range of variation and the actual distribution used for the 
input variables of the vegetation and background.  
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3.3.2.1 Using results from the literature for leaf characteristics 

One of the main problems in generating a learning data base is to get the proper distributions for 
the input model variables if realistic distributions are required. Unfortunately, the distribution of 
most variables is not precisely known. For leaf optical properties, a brief literature review allows to 
characterize the distributions for chlorophyll (Cab) and dry matter contents (Cdm).  

Results show that Cab et Cdm distributions are roughly Gaussian (Figure 5 and Figure 6). However, 
they depend on the vegetation type:  

 for chlorophyll (Figure 5), the mode is close to 40 μg.cm-2 for non evergreen vegetation 
types, while it is close to 70 μg.cm-2 for evergreen broadleaf forests (the Hawaiian data set 
reported in Feret et al (2008). Note that the chlorophyll content definition considered here is 
consistent with the input of the PROSPECT model, i.e. it includes chlorophyll a and b as 
well as carotenoids. 

 for dry matter contents (Figure 6), the mode is close to 0.005 g.cm-2 for non evergreen 
broadleaf forests, and close to 0.012 for evergreen broadleaf forests.  

The distribution derived from a compilation of literature data (Figure 6 left) with few broadleaf 
evergreen forest samples is very consistent with the observations of Feret et al (2008) (Figure 6 
right). 

Note however that the compilation of data presented here might not represent realistically the 
actual distribution of values around the globe. Anyway, the differences found between vegetation 
types should indicate that training specific algorithm for each vegetation type might improve the 
performances. 

 

Figure 5: Distribution of leaf Chlorophyll content as described by Feret et al (2008). Values of 
Chlorophyll include chlorophylls a and b as well as carotenoids. Distribution in blue corresponds to 
data mainly from tropical forests (Hawai data set in Feret’s paper). Distribution in red corresponds to 
other species. 
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Figure 6: On the left, distribution of dry matter contents (Cdm) derived from literature review: (Prado 
and De Moraes 1997; Poorter and Evans 1998; Reich, Ellsworth et al. 1998; Poorter and De Jong 
1999). On the right, distributions reported by Feret et al (2008): distribution in blue corresponds to 
data mainly from tropical forests (Hawai data set in Feret’s paper). Distribution in red corresponds to 
other species. 

The water content was tied to the dry matter content assuming that the green leaves have a 
relative water content close to 75%.  

3.3.2.2 Soil characteristics 

The reference soil spectra will be derived from a soil reflectance data base available at INRA 
Avignon representing a large variation of soil types, moisture, roughness and geometrical 
configurations (Jacquemoud et al. 1992; Liu et al. 2002). Considering the brightness concept will 
allow increasing the diversity in actual soil properties. Only 7 soil spectra were selected among the 
1500 measured ones available to represent the range of spectral shapes observed within a good 
accuracy (Figure 7). The measurements were performed using an ASD Fieldspec Pro 
spectrophotometer providing a 1nm spectral sampling close to the spectral resolution in the visible 
and near infrared domains 

 

Figure 7. RMSE values associated to the reconstruction of all the soils investigated for SENTINEL2 
bands (left) and distribution of the residuals when considering 7 soils. 
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The corresponding soil spectra are presented in Figure 8. Note that here all the spectra were 
normalized so that they provide the same reflectance value when averaged over the SENTINEL2 
bands. 

 

Figure 8. The 7 standard soil reflectance spectra in SENTINEL2 spectral domain as measured by Liu 
et al (2002). 

 

Figure 9. Distribution of brightness values as observed over Liu’s data base (Liu et al. 2002) when 
using 7 reference spectra. 

3.3.2.3 Canopy variables 

3.3.2.1 Leaf Area Index 

(Scurlock et al. 2001) have compiled about 1000 LAI experimental values over 300 original-source 
references. These values correspond to nearly 400 unique field sites during the 1932-2000 period. 



S2 Toolbox Level 2 Product algorithms 

Version 1.1  
 

.   

Issue:     V1.1 Date: 02.05.2016  Page: 29 of 53 
 

Figure 10 shows that the measured LAI is quite uniformly distributed between the 1-7 values while 
low LAI values (<1) are not frequently measured. On the other hand, some very high but not very 
frequent LAI values are represented in this data set (up to 40).  

 

Figure 10. Distribution of leaf area index from the 1008 ground LAI measurements provided by 
Scurlock et al (2002) 

However, although this data set represents a large amount of experimental data, it does not 
represent well the actual LAI distribution over the globe for the following reasons: 

 The measurements are achieved when some vegetation is present during the experiments. 
Therefore, bare soils (LAI=0) are not taken into account here, whereas they represent 
about 30% of the emerged surface (Baret et al. 2006; Masson et al. 2003). 

 The measurements used in this study are performed using different methods and LAI 
devices leading to different estimates of this variable. They all correspond to LAI but under 
different assumptions (effective or true LAI) and accuracy (Garrigues et al. 2008; Weiss et 
al. 2004) 

 Finally the distribution derived from this study is certainly not representative of the actual 
distribution at the Earth surface over a year since the measurements correspond to 
punctual dates during the vegetation cycle depending on the objectives of the authors of 
the studies. 

We compared the distribution obtained from Scurlock et al (2001) with the one derived from the 
VALERI data set (http://www.avignon.inra.fr). This latter corresponds to an ensemble of 
measurements performed between 2000 and 2008 over various vegetation types, including the 
main biomes, and is used for the validation of remote sensing products (Figure 11). The results 
presented here correspond to the local measurements of effective LAI performed at the 20m scale. 
The VALERI distribution is significantly different from that of Scurlock’s since true LAI values are 
most of the time higher than effective values. Further, the VALERI data set includes a significant 
fraction vegetation types with low LAI values such as crops shrubs and savannahs which also 
represent a significant fraction of the earth surface (about 30%). Therefore, it may better 

http://www.avignon.inra.fr/
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correspond to what is expected for the algorithm training data base although the spatial and 
temporal sampling are very limited. 

 

Figure 11. Effective LAI distribution over the VALERI sites 

Therefore, the only way to access the actual distribution of LAI over the Earth Surface would be to 
use remote sensing estimates over a representative sample of the Earth surface (Baret et al. 2006; 
Masson et al. 2003). Such data set is currently available only at 1km spatial resolution (MODIS, 
CYCLOPES, GLOBCARBON) which might very significantly depart from the required distribution at 
20 m resolution, particularly regarding the geostatistical characteristics of landscapes, with typical 
ranges of few hundreds of metres (Garrigues et al. 2006b).  

In addition, the distribution used for LAI may also depend on that of the other variables, particularly 
for the larger LAI values corresponding to near ‘saturation’ conditions. In these conditions, the 
neural network will adjust a model that will pass in the middle of the cloud of possible solutions. To 
prevent underestimations due to more values with low LAIs, it was decided to use log-normal 
distributions that may agree quite well with those presented in Figure 10 and Figure 11 and fixing 
the upper limit to LAI=15. The log-normal distribution was slightly modified to increase the 
frequency of low LAI values by adding 15% of cases within a uniform distribution law for the 15% 
lower LAI values. 

3.3.2.2 Average Leaf Angle (ALA) 

Very few measurements of the average leaf angle measurements have been reported within the 
scientific community. The VALERI project provides some information on the expected distribution 
of LAI at 20 m spatial resolution. Figure 12 shows that low ALA values (up to 40°) are not very 
frequent. A peak is observed at ALA=60° which corresponds to a spherical distribution. The ALA 
was derived from the inversion of a gap fraction model measured either from hemispherical photos 
or LAI2000 devices allowing estimating concurrently both effective LAI (Figure 11) and ALA (Weiss 
et al. 2004). However, due to the limited spatial and temporal sampling associated, with in 
additional possible biases due to the retrieval technique, these distributions might be only 
considered as indicative.  
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Figure 12. Distribution of the average leaf angle (ALA) over the VALERI sites  

3.3.2.3 Hot Spot Parameter (HOT) 

It is not easy to derive the hot spot parameter distribution at the Earth surface from the literature 
since it is a variable which is only used in radiative transfer modelling. Moreover, this variable has 
an impact only when remote sensing measurements are acquired near the principal plane.  Figure 
13 shows the distribution of typical values of the hot spot parameter for some crops provided by 
(Baret  et al. 2009), most of the values are between 0.05 and 1. Extreme values are obtained for 
crops with specific architecture: low values for row planted trees (olive, peach) while the highest 
value is observed for young vineyards, lettuce and sugar beets.  

 

Figure 13. Relative leaf size (hot spot parameter) as a function of plant densities from (Baret  et al. 
2009). Typical values for 3D simulated scenes (crosses) and for actual canopies (circles): Wheat 
(Wh), Maize (Mz), Sorghum (Sg), Vineyards (Vy), Sunflower (Sf), Soybean (Sy), Tomatoe (To), Olive 
tree (Ol), Peach (Pe), Lettuce (Lt) and Beet (Bt).  

3.3.2.4 Co-distribution between variables 

Almost no information is available on possible co-distributions between variables. However, it is 
likely that some of the variables are linked together. For example, a very dense forest canopy will 
never be associated to low chlorophyll content and planophile leaf orientation. For this reason, we 
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proposed to restrict the range of variation for some variables as a function of LAI value. This will be 
simply achieved by assuming that the range of variation linearly changes with LAI between Vmin(0) 
(respectively Vmax(0)) and Vmin(LAImax) (respectively Vmax(LAImax)) as illustrated by Figure 14. LAImax 
is the maximum LAI value considered. 

This will be simply achieved by assuming that the variable dynamics linearly varies with LAI 
according to: 

(V-Vmin(0))/(Vmax(0)-Vmin(0)) = (V*-Vmin(LAI))/(Vmax(LAI)-Vmin(LAI)) 

With : Vmin(LAI)=Vmin(0)+LAI*(Vmin(LAImax)-Vmin(0)) 

and Vmax(LAI)=Vmax(0)+LAI*(Vmax(LAImax)-Vmax(0)) 

where V* is the value of variable V after linking its distribution to that of LAI. The values defining 
the co-distributions are specified in Table 6. They were derived empirically, assuming that large 
LAIs corresponded to a restricted range of the other variables. 

Note that on other complementary way to relate the distribution between input variables will consist 
in filtering the simulated outputs (reflectance, FAPAR) as it will be demonstrated in the following. 

 

Figure 14. Scheme explaining the way the distribution of variable V is linked to that of LAI. 

3.3.3 Actual generation of the inputs for the training data base 

The training data base has to be sufficiently large to allow a robust calibration of the network, and 
also get a sub-set of the data base for hyper-specialization and test. The optimal size of the 
training data base depends on the complexity of the problem to solve. Previous studies (Combal et 
al. 2002) have shown that for a medium complexity problem, a training table close to 10 000 cases 
was satisfactory. In the current case that corresponds to a more complex algorithm, the size of the 
training data base should increase. We have simulated 41472 cases. 
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 Variable Minimum Maximum Mode Std Nb_Class Law 

Canopy LAI 0.0 15.0 2.0 3.0 6 Gauss 

ALA (°) 30 80 60 30 3 gauss 

Hot 0.1 0.5 0.2 0.5 1 gauss 

Leaf N 1.20 2.20 1.50 0.30 3 gauss 

Cab (µg.m
-2

) 20 90 45 30 4 gauss 

Cdm (g.m-2) 0.0030 0.0110 0.0050 0.0050 4 gauss 

Cw_Rel 0.60 0.85 0.75 0.08 4 uni 

Cbp 0.00 2.00 0.00 0.30 3 gauss 

Soil Bs 0.50 3.50 1.20 2.00 4 gauss 

Table 5. Distribution of the input variables of the radiative transfer model used to generate the 
training data base. Truncated Gaussian, log-normal or uniform distribution laws are used, 
characterized by the mode, the standard deviation (s), and minimum and maximum values. The 
number of classes for each variable is presented (Nb_Class). 

 

 Variable Co_Distri
bution 

Vmin(0) Vmax(0) Vmin(LAImax) Vmax(LAImax) 

Canopy ALA (°) Yes 30 80 55 65 

Hot Yes 0.1 0.5 0.1 0.5 

Leaf N Yes 1.20 2.20 1.3 1.8 

Cab (µg.m
-2

) Yes 20 90 45 90 

Cdm (g.m-2) Yes 0.0030 0.0110 0.0050 0.0110 

Cw_Rel Yes 0.60 0.85 0.70 0.80 

Cbp Yes 0.00 2.00 0.00 0.20 

Soil Bs Yes 0.50 3.50 0.50 1.20 

Table 6. Values used for the co-distributions of the variables with LAI (see Figure 14). 

 

The sampling scheme is based on a full orthogonal experimental plan (Bacour et al. 2002). This 
consists of identifying classes of values for each variable. Then all the combinations of classes are 
sampled once. Finally the actual values of each variable are randomly drawn within the range of 
variation defined by the corresponding class, according to the distribution law specified for the 
variable considered. This process allows accounting for all the interactions, while having the range 
of variation for each variable densely and near randomly populated. The number of classes 
(equally spaced) for each variable is shown in Table 5. 

The following scheme was used to generate the training data base: 

1. Date. Randomly draw a date. a whole year (365 days) is used. The year is decomposed 
into 4 periods that are successively sampled. 

 
2. Location. The location is randomly selected within -56° and + 83° latitudes corresponding to 

the mission requirements. However above + 70° latitude the illumination conditions are very 
poor most of the time, impacting the accuracy of radiance measurements. In addition, the 
high sun zenith angles experienced induce strong atmospheric effects due to the increase 
optical path. 

Once date and location are sampled, the corresponding geometrical configuration is derived 
using SENTINEL2 orbit characteristics and swath (Table 1). Note that special patterns are 
observable, due to the orbit constraints. 
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Figure 15: Distribution of values of observational characteristics used to simulate the learning 
data base. 

 

3. Background variables. 

 Background type: The background type is derived by randomly selecting one of the 7 
soil background types (Figure 8). 

 Brightness: The Bs coefficient is randomly drawn according to a truncated Gaussian 

distribution centred on Bs=1.0 (Table 5). The larger frequencies for the lower 𝐵𝑠 values 
are explained by the co-distribution with LAI values: bright soils are not expected under 
very dense vegetation. 

 

Figure 16. Distribution of the soil brightness (Bs, left) and soil type (right, I_Soil) used. 

 

4. Canopy variables. The following distributions were used (Table 5): 
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 LAI: The distribution of LAI values follows a gaussian distribution with a mode at LAI=2, 

and a relatively wide distribution (=3). This allows sampling significantly low and high 
values of LAI. The higher LAI values were truncated at LAI=15. This particular selection 
of distribution of LAI values improved the saturation problem by introducing a significant 
amount of very high LAI values in the training process. The distribution law was further 
modified to increase the frequency of low LAI values as explained previously.  

 ALA: The average leaf inclination angle is assumed to follow a truncated Gaussian 
distribution centred over the spherical widely represented one. The distribution is tied to 
the LAI, assuming that for large LAI values, leaf angle distribution was close to a 
spherical one. The peak observed between 55° and 65° is due to the co-distribution 
constraints for high LAI values.  

 HOT: The hot spot parameter follows a truncated Gaussian distribution. 

 

Figure 17. Distribution used for canopy variables LAI, ALA and Hot (HsD).  

5. Leaf optical properties. Here also, very little knowledge is available on the actual leaf 
characteristics. Truncated Gaussian distributions were used for all these variables (Table 5) 
The artefacts observed in the distributions are due to the co-distribution constraints applied 
for high LAI values (Table 6). 

  

 

Figure 18. Distribution of the leaf characteristics used. 

At the end of the simulation process, a total number of 41472 cases were simulated. Note that this 
number of cases is above the minimum 10 000 cases as required for a medium complexity 
problem and should allow good training performances for this more complex problem. This data set 
are then be split in two parts with a random selection process: 

 Training: 2/3 of the simulations are affected randomly to the training of the neural network 

 Testing and Hyper-specialization: 1/3 of the simulations are used for the hyper-
specialization control and evaluation of theoretical performances. 
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Figure 19. Distribution and co-distributions of the input soil, canopy and leaf characteristics used to 
populate the training data base. 

 

6. Simulation of the top of canopy reflectance for the 8 SENTINEL2 bands 

The previously derived table of input variables is used to simulate the corresponding SENTINEL2 
top of canopy reflectance in the 8 bands using the PROSPECT+SAIL model.  

A simple uncertainty model was used to better describe actual SENTINEL2 characteristics as well 
as the ability of the radiative transfer model used to represent actual reflectances. They are 
described in Table 7. The uncertainties are computed according to: 

   R*()=R()(1+(MD()+MI)/100)+AD()+AI 

Where R() is the raw simulated reflectance, R*() is the reflectance contaminated with noise, MD 
is the multiplicative wavelength dependant noise, MI is the multiplicative wavelength independent 
noise, AD is the additive wavelength independent noise, and AI is the additive wavelength 
independent noise. 

The uncertainties attached to the radiative transfer model mainly derive from the representation of 
canopy architecture and leaf and soil background optical properties which is difficult to estimate. A 
posterior estimation will be issued using the reflectance mis-match criterion as computed over 
actual SENTINEL2 data.  
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Sensor SENTINEL2 

Bandes_Utiles 
Add. Dep. 

(AD) 
Add. Ind. 

(AI) 
Mult. Dep. 
(MD) (%) 

Mult. Ind. 
(MI) (%) 

Band3 0.01 0.01 2 2 

Band4 0.01   2   

Band5 0.01   2   

Band6 0.01   2   

Band7 0.01   2   

Band8a 0.01   2   

Band11 0.01   2   

Band12 0.01   2   

Table 7. Characteristics of the uncertainties model used.  

 

Figure 20 shows the distribution and co-distribution of simulated reflectances. Bands 3 and 5 
appear very strongly correlated. The same is observed for bands 6 and 7 with 8a, and in a lesser 
way bands. For each band, the distributions are roughly Gaussian. 

 

 

Figure 20: Distribution and co-distribution of the training database simulated reflectances, in the 8 
SENTINEL2 bands. 
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3.3.4 Consequence on the distribution of the output variables 

3.3.4.1 Distribution of the output variables 

Figure 21 shows the distribution and co-distribution of the output variables. They are highly non 
Gaussian. Co distributions are of interest since they demonstrate that there is no single 
relationship between one output variable and another. Note that, as expected, the CWC and CCC 
are quite linearly correlated to LAI. Further, some relationships have already been investigated in 
detail over a range of vegetation types such as the LAI-FAPAR relationship. It may be the basis to 
check the consistency of the simulated outputs with regards to the expected behaviour. 

 

Figure 21. Distribution and co-distribution of the output variables.  

3.3.4.2 Relationship between LAI and FAPAR 

 

A number of experimental observations report that the relationship between LAI and FAPAR 
follows an exponential law with extinction coefficients showing a limited range of variability. Figure 
22 (left) shows results derived from the compilation of VALERI 3x3 km² sites covering a large 
range of biome types Figure 22 right shows similar relationship as simulated for MODIS products 
using 3D radiative transfer model run for a range of canopy types. Both LAI-FAPAR relationships 
show very good agreement. The distribution of cases simulated for SENTINEL2 products shows 
also a good consistency.  
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Figure 22: On the left, relationship between LAI and FAPAR as established over the ensemble of 
VALERI sites. Symbols correspond to the sites. The solid line corresponds to the best fit model. On 
the right, symbols correspond to MODIS C4 relationship between LAI and FAPAR as simulated by the 
3D radiative transfer model for the several vegetation types considered. The several lines correspond 
to the distribution within the learning data base. The line with triangles represents a threshold under 
which values are not expected. 

3.4 TRAINING THE NEURAL NETWORK 

Neural networks are defined mainly by the type of neurons used (the transfer function), the way 
they are organized and connected (the network architecture) and the learning rule. In addition, the 
input and output values need to be properly normalized to prevent any scaling factor or numerical 
problem. Back-propagation artificial neural network (Rummelhart et al. 1986) is one of the most 
common neural networks used to solve our radiative transfer model inversion problem. 

3.4.1 Normalization of the input and output values 

The inputs (SENTINEL2 TOC reflectance in 8 bands and geometry) and output (the biophysical 
variable considered) values are first normalized according to Equation 6. Such data transformation 
is performed mainly to increase the performances of convergence of the training algorithm. 

X* = 2*(X-XMin)/(XMax-XMin)-1  Equation 6 

Where X* is the normalized input, X the original value, Xmin and Xmax respectively the minimum 
and maximum values. 

3.4.2 Network architecture 

The connections between neurons are associated to a ‘‘synaptic’’ weight. Each neuron transforms 
the sum of the weighted signal from the previous neurons according to a given transfer function 
and a bias. The combination of sigmoid and linear functions is recognized as capable of fitting any 
type of function (Demuth and Beale 1998)  . 

For our more complex problem, an optimal architecture had to be determined for each biophysical 
variable. Several network structures have been tested. For each possible structure, three neural 
networks, differing by the initialization of their coefficients, have been trained. The selection of the 
"optimal" network architecture is then based on the RMSE between the outputs and the "true" 
biophysical variables as well as on the number of coefficients to be adjusted. Lower numbers are 
preferred because they allow faster runs of the neural networks in operational mode while 
precluding hyper-specialization.  
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Although is it possible to train a single network for all the variables considered here, previous tests 
have shown that the training is more easy when targeting a single variable. This decreases 
significantly the complexity of the neural network architecture associated to multiple output 
variables. Further, these tests showed also that only marginal lost consistency between the 
variables to be estimated was observed when using individual neural nets for each variable as 
compared to a single neural net for all the variables. 

 

The neural networks investigated that way are thus composed of (Figure 14): 

 one input layer made of the 11 normalized input data (cos(Bs)°, cos(Bv)B, cos(f), and the TOC 
reflectances in the 8 SENTINEL2 wavebands). 

 one hidden layers with 5 neurons with tangent sigmoid transfer functions. 

 one output layer with a linear transfer function. 

Note that this simple network requires 65 synaptic coefficients and 6 bias coefficients to adjust. 

 

 

Figure 23. Neural network architecture developed for the estimation of the biophysical variables 
considered from the 9 SENTINEL2 bands and the 3 angles defining the geometry of observation. The 
network is made of 1 hidden layer of 5 neurons and 1 linear output neuron. The ‘Norm’ symbols 
correspond to the normalization process as described by Equation 10. Symbols ‘S’ and ‘L’ 
correspond respectively to the sigmoid (tansig) and linear transfer functions of the neurons. 
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3.4.3 Learning process 

The learning process is mainly made of two elements: the training dataset that was described 
earlier, and the learning rule that is now described. The Levenberg–Marquardt optimization 
algorithm is used to adjust the synaptic weights and neuron bias to get the best agreement 
between the output simulated by the network and the corresponding value of canopy biophysical 
variable simulated in the training data base. The initial values of the weights and biases were set to 
a random value between -1.0 and +1.0. To prevent from hyper-specialization, a sub-set of the 
training data base is used to control whether the network starts to hyper-specialize, i.e. represents 
the particular features of the training data set and therefore losing its capacity to describe the 
general features to be extracted. When this happens, the optimization process is stopped.  

Three networks were trained in parallel to retrieve the canopy biophysical variables, each 
corresponding to independent random drawing of the initial values of the synaptic weights and 
bias. Finally, the network kept for implementation uses is the one that provides the best 
performances over the test data set. 

3.4.4 Theoretical Performances 

Theoretical performances allow checking whether no major problems occur during the training 
process and provide a first glance on the capacity of SENTINEL2 to access the considered 
variables. The theoretical performances of the networks were evaluated over the test data set 
which is a fraction of the simulated training data base (1/3) not used in the calibration of the neural 
networks. It consists mainly in computing simple statistics such as RMSE values and exploring the 
dependency of residuals on the variable itself. 

Results show that the training of the networks was quite efficient, with relatively small RMSE 
values: 0.89 for LAI, 0.05 for FAPAR, 0.04 for FVC, 56µg/cm² for CCC and 0.03g/cm² for CWC. 
FAPAR (Figure 25) and FVC (Erreur ! Source du renvoi introuvable.) show the best 
performances as expected, with the larger RMSE values observed for the medium values of the 
products. The algorithms are unbiased as expected (Figure 24 to Figure 26). No early saturation 
effect is observed as a function of the product value: LAI seems to be well estimated up to values 
of LAI=6. However, uncertainties increase with LAI values (Figure 24). The same applies for CCC 
and CWC since they are directly correlated with LAI (Figure 27 and Figure 28).  
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Figure 24. Theoretical performances of the neural networks for LAI on the test database 

 

Figure 25. Theoretical performances of the neural networks for FAPAR on the test database 
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Figure 26. Theoretical performances of the neural networks for FCOVER on the test database 

 

Figure 27. Theoretical performances of the neural networks for CCC on the test database 
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Figure 28. Theoretical performances of the neural networks for CWC on the test database 

 

3.5 DEFINITION DOMAIN 

3.5.1 Input out of range flag 

When inputs are outside the convex hull defined by the simulated reflectance values of the training 
data base, i.e. the definition domain, then a specific ‘input out of range’ flag is raised. The convex 
hull is approximated by a hypercube with the same dimensions as those of the inputs of the neural 
network (i.e. 8 for SENTINEL2). Each dimension corresponding to a specific input of the neural 
network varies within the minimum and maximum values (Table 8). The range is split into 10 equal 
classes of values (see Figure 29 in the simple case of 2 inputs). However, because it was checked 
that geometrical configuration was more or less evenly distributed with regards to reflectance 
values in the considered bands, the geometrical configuration was not entered as input for the 
definition domain to simplify the process and make the code running faster. Results show that less 
than 50% of the cells the 8th dimension hypercube corresponds to expected reflectance 
observations over the surface. 
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Figure 29. Schematic representation of the convex hull in the case of 2 dimensional inputs of the 
network. The convex hull is approximated by a regular grid. The cells with ones (the gray cells) 
correspond to cases of possible input range (i.e. inside the convex hull) while cells with zeros 
correspond to inputs out of range (outside the convex hull).  

 

 Min Max 

Band3 0 0.26 

Band4 0 0.30 

Band5 0 0.32 

Band6 0 0.62 

Band7 0 0.75 

Band8a 0 0.78 

Band11 0 0.52 

Band12 0 0.50 

Table 8. Minimum and maximum input values (bounding box) of the definition domain for inputs from 
SENTINEL2 TOC reflectance. 

 

The algorithm used to check whether the inputs are outside the convex hull is the following: 

 Check if the inputs are outside the bounding box, i.e. if the value of an input is either lower 

than the corresponding minimum or larger than the maximum values defined in Table 

8Erreur ! Source du renvoi introuvable.. If this is the case, the ‘input out of range’ flag is 

raised. 

0 0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 1 1 0 0 0 0 0 0 0 

0 1 1 1 0 0 0 0 1 1 

0 1 1 1 1 0 0 1 1 1 

0 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 0 0 

0 1 1 1 1 1 1 0 0 0 

0 1 1 1 1 1 1 0 0 0 

1 1 1 0 0 0 0 0 0 0 

Input 2 

Input 1 
Min( Inuput 1) Max ( Inuput 1) 

Min( 

Inuput 

2) 

Max( 

Inuput 

2) 
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 If inputs are within the bounding box, then, check if values of the inputs are in a non valid 

cell, i.e. a cell with ‘0’ (Figure 29). If this is the case, the ‘input out of range’ flag is raised. 

 

3.5.2 Output out of range flag.  

In the case where the ANN provides biophysical variable estimates outside their definition range, 
the corresponding product value will be set to the closest bound of the range, i.e. either the 
minimum or the maximum accepted values. However, because of the several sources of 
uncertainties associated to the inputs and the algorithm calibration, a tolerance is set before raising 
the ‘output out of range’ flag: Three cases are possible for each product: 

1. The product value is within expected physical range of variation (Table 9): It is considered 

valid. 

2. The value is within the tolerance limits (Table 9) but higher (lower) than the physical 

maximum (minimum). The value is considered valid but set to the physical maximum 

(minimum).  

3. The value is outside the tolerance limits: it is considered invalid. 

 

 Tolerance Pmin Pmax 

LAI 0.2 0 8.0 

FAPAR 0.1 0 0.94 

FVC 0.1 0 1.0 

CCC 15 0 600 

CWC 0.015 0 0.55 

Table 9. Tolerance, and Minimum (Pmin) and maximum (Pmax) values admitted for the products. 
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4 PRACTICAL CONSIDERATIONS FOR THE 
ALGORITHM IMPLEMENTATION 

4.1 REQUIREMENTS FOR EASILY UPDATING THE ALGORITHM 

To be able to easily upgrade the algorithm in the processing chain, all the coefficients used for the 
neural networks, normalization, quality flags and uncertainties should be set in parameter tables 
that can just be changed when updates will be available. This will occur possibly several times 
within a short period before launching the operational processing chain, when new product values 
will be available and when possible problems in the early versions will be quickly identified. 

This information is available in excel files for each product: ‘Algo_S2_VX_SL2T_VVV.xlsx ’, where 
X satnds for the version of the algorithm, and VVV stands for the vegetation variable investigated, 
i.e. VVV=[LAI, FAPAR, FVC]. 

4.2 ALGORITHM IMPLEMENTATION 

The different steps are described hereafter: 

1. Normalization of the inputs: for the 12 inputs X, the following normalization equation must be 
applied: 

   X*=2.(X-Xmin)/(Xmax-Xmin) – 1 

where X* is nornalized input value, and Xmin and Xmax are computed over the neural network 
training data set. These values are provided in the Excel file under sheet ‘Normalisation’ 

 

2. Run the neural network 

The neural networks will be described by its architecture, i.e, the the number of hidden layers 
and the output layer. Each layer is described by its number of neurons, associated weight and 
biases and transfer function.  

For the neurons of the hidden layers, the transfer function is a tangent sigmoid function given 
by:   

Y=Tansig(x) = 2/(1+exp(-2x))-1 

While for the output layer the transfer function is linear (y=x). 

For each neural net (one per product and per sensor), tables will be provided given the weight 
and biases for each neurons. Example for the NNT provided for LAI is provided hereafter. 
Sheet ‘Weights’ in the Excel file contains the weights, biases and neural network structure 
information. 

3. Denormalization of the output 

It simply consists in applying the inverse function used for input normalization: 

Y=0.5.(Y*+1)*(Ymax-Ymin) +Ymin 
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where Y* is normalized output value issued from the NNT, and Ymin and Ymax are computed 
over the neural network training data set. These values are in the sheet ‘Normalisation’ in the 
Excel file contains the ‘denormalisation’ information. 

 

4. Generate quality indicator: 

Generate the quality indicator QA coded over 3 bits, 

QA=0  0  0 :  data is OK 

QA=0  0  1 :  input out of range (provide product value if within tolerance) 

QA=0  ,1  0 : output out of range (provide product value if within tolerance) 

QA= 0 1  1 : input and output out of range (product value = fill value) 

QA= 1  0  0 : bad quality of input values (depending on the TOC reflectance S2 product (provide 
product value if within tolerance) 
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5 CONCLUSION 

This ATBD describes the algorithm used to compute LAI, FAPAR and FVC, from SENTINEL2 top 
of canopy reflectance data that will be implemented in the SENTINEL2 Toolbox. If the principles of 
the algorithm will be kept unchanged, it is likely that updates of the coefficients will be made when 
issues will be identified, data on actual models of uncertainties refined (including residual 
atmospheric effects). It is therefore important to keep the algorithm easy to upgrade. Refinement 
could be also made with actual SENTINEL2 top of canopy reflectance, allowing to filter the training 
data base so that only the simulated cases too different from the observed ones would be 
eliminated. This should result in better training and performances. 

The proposed algorithm is based on specific radiative transfer models associated with strong 
assumptions, particularly regarding canopy architecture (turbid medium model). All the variables 
derived from such algorithms should be seen as effective, i.e. the variables that would correspond 
to the measured satellite signal reflected by a canopy verifying all the assumptions made through 
the radiative transfer models. Depending on the variable, this may lead to differences with ground 
values that may be accessed from field measurements. Further, the algorithm is ‘generic’, i.e. it 
should apply to any type of vegetation with reasonable performances. However, to better match 
the specificities of given canopies, either simple correction could be calibrated, or more specific 
algorithm could be developed. 

One strong assumption embedded in any single pixel retrieval algorithm as this one, is that the 
pixel targeted belongs to a landscape patch presenting enough homogeneity (at the pixel scale) 
preventing unexpected loss or gain of radiation fluxes. Therefore, it can be applied for larger 
resolution than 20m. For forests with large crowns, or any pixel showing strong heterogeneity such 
as pixels at the intersection between two different vegetation patches, results may be uncertain. 
This extends also to pixels where the neighbouring ones are very different. Specific algorithms 
should be developed to detect such situations and possibly propose alternative retrieval methods. 
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