
SENTINEL-1

Command-Line InSAR Processing 
  Issued February 2020

Alex McVittie

Copyright © 2020 SkyWatch Space Applications Inc. https://skywatch.c  om      
        http://step.esa.int

http://step.esa.int/
https://bit.ly/2T4i5kc


Introduction
This tutorial will guide you through the setup of creating an InSAR processing framework for Sentinel-
1 SLC radar imagery to create interferograms. 

System requirements
Interferogram generation is resource-intensive. Having at minimum a quad-core CPU, 16gb of RAM 
and 20gb of free disk space is recommended. You also need to have an EarthData (Free to register) 
account to download the Sentinel-1 imagery. As the scenario in this tutorial is from 2016, it is in offline
mode on the Copernicus data hub, increasing wait time to access. NASA’s ASF Vertex has the data 
readily available. 

You will also need to have SNAP installed on a desktop with a monitor to set up the processing graph, 
prior to running this on a server with command-line only. 

Scenario
For this InSAR tutorial, we will be generating an interferogram that visualizes the surface deformation 
caused by the April 16th 2016 Kumamoto earthquake in Japan. Two Sentinel-1 products are needed, one
for before the event, and one for after. They can be downloaded here:

https://datapool.asf.alaska.edu/SLC/SA/
S1A_IW_SLC__1SSV_20160408T091355_20160408T091430_010728_01001F_83EB.zip 

https://datapool.asf.alaska.edu/SLC/SA/
S1A_IW_SLC__1SSV_20160420T091355_20160420T091423_010903_010569_F9CE.zip 

Building the processing graph
We will be building upon an existing graph that is provided with SNAP – the TOPSAR Coreg 
Interferogram graph, available in the graph builder through Graphs > InSAR Graphs. 

https://datapool.asf.alaska.edu/SLC/SA/S1A_IW_SLC__1SSV_20160420T091355_20160420T091423_010903_010569_F9CE.zip
https://datapool.asf.alaska.edu/SLC/SA/S1A_IW_SLC__1SSV_20160420T091355_20160420T091423_010903_010569_F9CE.zip
https://datapool.asf.alaska.edu/SLC/SA/S1A_IW_SLC__1SSV_20160408T091355_20160408T091430_010728_01001F_83EB.zip
https://datapool.asf.alaska.edu/SLC/SA/S1A_IW_SLC__1SSV_20160408T091355_20160408T091430_010728_01001F_83EB.zip


While this generates an initial interferogram and debursts it, there are a few enhancement steps required
after the TOPSAR-Deburst. Topographic phase removal must be run, along with multi-looking and 
Goldstein phase filtering. Topographic phase removal (Radar > Interferometric > Products > 
TopoPhaseRemoval) improves the accuracy of the interferogram by reducing the influence created by 
terrain using a DEM. SNAP will auto-select a DEM to download, but you may wish to modify the 
parameters to choose a different DEM in the processor options. 

At this point, the interferogram has a large amount of noise, with patterns in the image being difficult to
detect. Multi-looking (Radar > SAR Utilities > Multilook) will improve the phase fidelity of the the 
interferogram, which performs averaging of neighbouring pixels. 

Within the processing parameters tab, the number of range and azimuth looks defines the window size 
that averages the product. Setting the Range Looks to 6 and the Azimuth Looks to 2 results in a 6x2 
window to average pixels with, creating an approximately 25x25m resolution raster. 

Finally, we must apply the Goldstein phase filter (Radar > Interferometric > Filtering > 
GoldsteinPhaseFiltering) to improve the interferometric phase. Our graph should now look like the 
following: 

Save this graph XML file and open the XML file in your preferred text editor. To build a repeatable 
workflow, we want to substitute a few values in the graph with variables that can be brought in from a 
text file – this allows you to run this graph in batch on many sentinel-1 image pairs, if you needed to 
produce many sets of interferograms. SNAP’s gpt can substitute ${variableName} with a variable 
value provided in a configuration file.

Within the first Read, add the following directly after <parameters/> :

<parameters class="com.bc.ceres.binding.dom.XppDomElement"> 
<file>${product1}</file></parameters> 

If this already exists due to having products open in SNAP and the reads being auto-populated, replace 
the path in the <file> tags with the ${product1} variable. 

Do the same thing with the second Read, but have ${product2} in the <file> tags instead. 

Replace <subswath/> in both TOPSAR-Split operators with <subswath>${subswath}</subswath>, 
along with replacing <selectedPolarisations/> with 
<selectedPolarisations>${polarization}</selectedPolarisations> 



Additionally, within the TOPSAR-Split operators, remove the firstBurstIndex and lastBurstIndex tags 
and values. 

Within Multilook, replace <nRgLooks>6</nRgLooks> with <nRgLooks>${rangeLook}</nRgLooks> 
and <nAzLooks>2</nAzLooks> with <nAzLooks>${azLook}</nAzLooks>

Within Write, replace <file>/tmp/target.dim</file> with <file>${outputFile}</file>

With our graph XML file prepared, let’s create a parameter file that we can use to give SNAP the 
information it needs to transform our raw products into a filtered interferogram. 

Create a new text document titled input_parameters.properties . Within it, populate it as such, replacing
the paths for the two products with the path to where you have saved your products:

product1=/media/skywatch/USB/2016/
S1A_IW_SLC__1SSV_20160408T091355_20160408T091430_010728_01001F_83EB.zip

product2=/media/skywatch/USB/2016/
S1A_IW_SLC__1SSV_20160420T091355_20160420T091423_010903_010569_F9CE.zip

subswath=IW1

selectedPolarisations=VV

rangeLook=6

azLook=2

outputFile=/data/japan_earthquake.dim 

To execute this, in a shell simply run 

gpt processing_graph.xml -e -p input_parameters.conf 

and it will write the filtered interferogram out to (in this case) /data/japan_earthquake.dim

The GPT processing framework has many additional options that you can set. Run gpt -h to see a full 
list of options, such as setting available RAM and multithreading options. 



Output interferogram – the deformation fringe pattern very clearly shows the areas affected by the
earthquake. 


	Introduction
	System requirements
	Scenario

	Building the processing graph

