

SNAP Command Line Tutorial

Copyright © 2016 Array Systems Computing Inc. http://www.array.ca/
 https://step.esa.int

Graph Processing
 Issued July 2016

Updated January 2020

Luis Veci

http://www.array.ca/
https://step.esa.int/

SNAP Command Line Tutorial

2

SNAP Command Line Tutorial

This tutorial will show some examples of common processing done via the command line on Windows or Linux.

Graph Processing Framework (GPF)

The SNAP architecture provides a flexible Graph
Processing Framework (GPF) allowing the user to
create processing graphs for batch processing
and customized processing chains. The Graph
Builder, in SNAP-Desktop, allows the user to
graphically assemble graphs from a list of
available operators and connect operator nodes
to their sources. Graphs can then be saved and
batched processed from the GUI or from the
command line.
The GPF is based on the Java Advanced Imaging
(JAI) rendering chain. A graph is a set of nodes
connected by edges. In this case, the nodes are
the processing steps called operators. The edges
will show the direction in which the data is being
passed between nodes; therefore it will be a
directed graph. A graph can have no loops or
cycles, so it will be a Directed Acyclic Graph
(DAG).
The sources of the graph will be the data product
readers, and the sinks can be either a product
writer or an image displayed. An operator can
have one or more image sources and other
parameters that define the operation. Two or
more operators may be connected together so
that the first operator becomes an image source
to the next operator. By linking one operator to
another, an imaging graph or processing chain
can be created.
The GPF uses a Pull Model, where a request is made from the sink backwards to the source to process
the graph. This request could be to create a new product file or to update a displayed image. Once the
request reaches a source, the image is pulled through the nodes to the sink. Each time an image passes
through an operator, the operator transforms the image, and it is passed down to the next node until it
reaches the sink.
The graph processor will not introduce any intermediate files unless a writer is optionally added anywhere
in the sequence. Tiles are processed in parallel according to the number of available cores.

Graphs offer the following advantages:

• no intermediate files written, no I/O overhead

• reusability of processing chains

• simple and comprehensive operator configuration

• reusability of operator configurations

Installing SNAP-Engine in Server Mode
The SNAP modules are separated between the SNAP Engine and the SNAP Desktop. The SNAP Engine
consists of all core product models and processing functionality. A command-line interface able to execute

Figure 1 Tile Processing in the Pull Model
Graph Processor

SNAP Command Line Tutorial

3

within a headless operating system shell would access only the SNAP Engine while the SNAP Desktop is
used for creating a client graphical user interface.

The server-mode Toolbox is self-contained and does not depend on any GUI functionality for setup or
operation.

For Linux, download the 64-bit unix installer from the STEP website (http://step.esa.int).

$ chmod +x esa-snap_sentinel_unix_4_0.sh
$./esa-snap_sentinel_unix_4_0.sh

Follow the installation instructions.

Updating SNAP from the Command Line
In headless environments, you can update modules from the command line without the graphical user
interface. Only modules which are already installed can be updated. It is not possible to install new modules.
Locate the SNAP executable in the bin directory of the installation folder of SNAP. The executable will be
either snap.sh, snap.command or snap64.exe depending on your operating system. In the following
commands snap is used as a place holder for the executable file. You need to replace it with the appropriate
one for your system.

List available parameters
List the parameters with a description which can be passed to the executable.

snap --help

The parameter --nogui is missing in this list. This parameter prevents the SNAP GUI from being started.

List all modules
In order to get a list of all modules and the status if there is an update available you can call

snap --nosplash --nogui --modules --list --refresh

This will give you an output similar to what you can see in the following image.

Update all modules
To update all modules which can be updated you need to call

snap --nosplash --nogui --modules --update-all

http://step.esa.int/

SNAP Command Line Tutorial

4

Update specific modules
In order to update just one or multiple specific module you can call:

snap --nosplash --nogui --modules --update org.esa.snap.snap.ndvi

org.esa.snap.snap.envisat.reader

Additional module related options can be found by calling:

snap --nosplash --nogui --modules --help

The SNAP Graph Processing Tool (GPT)
SNAP EO Data Processors are implemented as GPF operators and can be invoked via the Windows or
UNIX command-line using the GPF Graph Processing Tool gpt which can be found in the bin directory of
your SNAP installation.

The installation should have added the SNAP/bin folder to the system path in order to call the gpt from
any folder.

Open a console window and type: gpt -h.

This will print out a short description of what the tool is for and describes the arguments and options of
the tool. A list of available operators is displayed depending on the toolboxes installed.

 Usage:
 gpt <op>|<graph-file> [options] [<source-file-1> <source-file-2> ...]

 Description:
 This tool is used to execute SNAP raster data operators in batch-mode. The
 operators can be used stand-alone or combined as a directed acyclic graph
 (DAG). Processing graphs are represented using XML. More info about
 processing graphs, the operator API, and the graph XML format can be found
 in the SNAP documentation.

 Arguments:
 <op> Name of an operator. See below for the list of <op>s.
 <graph-file> Operator graph file (XML format).
 <source-file-i> The <i>th source product file. The actual number of source
 file arguments is specified by <op>. May be optional for
 operators which use the -S option.

 Options:
 -h Displays command usage. If <op> is given, the specific
 operator usage is displayed.
 -e Displays more detailed error messages. Displays a stack
 trace, if an exception occurs.
 -t <file> The target file. Default value is './target.dim'.
 -f <format> Output file format, e.g. 'GeoTIFF', 'HDF5',
 'BEAM-DIMAP'. If not specified, format will be derived
 from the target filename extension, if any, otherwise the
 default format is 'BEAM-DIMAP'. Only used if the graph
 in <graph-file> does not specify its own 'Write' operator.
 -p <file> A (Java Properties) file containing processing
 parameters in the form <name>=<value> or a XML file
 containing a parameter DOM for the operator. Entries in this
 file are overwritten by the -P<name>=<value> command-line
 option (see below). The following variables are substituted in

SNAP Command Line Tutorial

5

 the parameters file:
 ${gpt.operator} (given by the 'op' argument)
 ${gpt.graphFile} (given by the 'graph-file' argument)
 ${gpt.parametersFile} (given by the -p option)
 ${gpt.targetFile} (given by the -t option)
 ${gpt.targetFormat} (given by the -f option)
 -c <cache-size> Sets the tile cache size in bytes. Value can be suffixed
 with 'K', 'M' and 'G'. Must be less than maximum
 available heap space. If equal to or less than zero, tile
 caching will be completely disabled. The default tile
 cache size is '512M'.
 -q <parallelism> Sets the maximum parallelism used for the computation, i.e.
 the maximum number of parallel (native) threads.
 The default parallelism is '8'.
 -x Clears the internal tile cache after writing a complete
 row of tiles to the target product file. This option may
 be useful if you run into memory problems.
 -T<target>=<file> Defines a target product. Valid for graphs only. <target>
 must be the identifier of a node in the graph. The node's
 output will be written to <file>.
 -S<source>=<file> Defines a source product. <source> is specified by the
 operator or the graph. In an XML graph, all occurrences of
 ${<source>} will be replaced with references to a source
 product located at <file>.
 -P<name>=<value> Defines a processing parameter, <name> is specific for the
 used operator or graph. In an XML graph, all occurrences of
 ${<name>} will be replaced with <value>. Overwrites
 parameter values specified by the '-p' option.
Operators:
 BandMaths Create a product with one or more bands using mathematical expressions.
 Collocate Collocates two products based on their geo-codings.
 EMClusterAnalysis Performs an expectation-maximization (EM) cluster analysis.
 …

With the gpt, you could process individual operators or you could process a graph of connected operators.

Type gpt operator-name –h to get usage information on each operator. The usage text of an operator also
displays a template clipping of the operators configuration when used in a graph.

gpt Calibration -h

Usage:
 gpt Calibration [options]

Description:
 Calibration of products

Source Options:
 -Ssource=<file> Sets source 'source' to <filepath>.
 This is a mandatory source.

Parameter Options:

SNAP Command Line Tutorial

6

 -PauxFile=<string> The auxiliary file
 Value must be one of 'Latest Auxiliary File', 'Product Auxiliary File',
'External Auxiliary File'.
 Default value is 'Latest Auxiliary File'.
 -PcreateBetaBand=<boolean> Create beta0 virtual band
 Default value is 'false'.
 -PcreateGammaBand=<boolean> Create gamma0 virtual band
 Default value is 'false'.
 -PexternalAuxFile=<file> The antenna elevation pattern gain auxiliary data file.
 -PoutputBetaBand=<boolean> Output beta0 band
 Default value is 'false'.
 -PoutputDNBand=<boolean> Output DN band
 Default value is 'false'.
 -PoutputGammaBand=<boolean> Output gamma0 band
 Default value is 'false'.
 -PoutputImageInComplex=<boolean> Output image in complex
 Default value is 'false'.
 -PoutputImageScaleInDb=<boolean> Output image scale
 Default value is 'false'.
 -PoutputSigmaBand=<boolean> Output sigma0 band
 Default value is 'true'.
 -PselectedPolarisations=<string,string,string,...> The list of polarisations
 -PsourceBands=<string,string,string,...> The list of source bands.

Graph XML Format:
 <graph id="someGraphId">
 <version>1.0</version>
 <node id="someNodeId">
 <operator>Calibration</operator>
 <sources>
 <source>${source}</source>
 </sources>
 <parameters>
 <sourceBands>string,string,string,...</sourceBands>
 <auxFile>string</auxFile>
 <externalAuxFile>file</externalAuxFile>
 <outputImageInComplex>boolean</outputImageInComplex>
 <outputImageScaleInDb>boolean</outputImageScaleInDb>
 <createGammaBand>boolean</createGammaBand>
 <createBetaBand>boolean</createBetaBand>
 <selectedPolarisations>string,string,string,...</selectedPolarisations>
 <outputSigmaBand>boolean</outputSigmaBand>
 <outputGammaBand>boolean</outputGammaBand>
 <outputBetaBand>boolean</outputBetaBand>
 <outputDNBand>boolean</outputDNBand>
 </parameters>
 </node>
 </graph>

Calling GPT with an Operator on a Single Product
Let’s suppose you wanted to read a product and convert it to another format. You could do that simply by
using the Write operator.

gpt Write –h

SNAP Command Line Tutorial

7

Usage:
 gpt Write [options]

Description:
 Writes a data product to a file.

Source Options:
 -Ssource=<file> The source product to be written.
 This is a mandatory source.

Parameter Options:
 -PclearCacheAfterRowWrite=<boolean> If true, the internal tile cache is cleared after a tile row has
been written. Ignored if writeEntireTileRows=false.
 Default value is 'false'.
 -PdeleteOutputOnFailure=<boolean> If true, all output files are deleted after a failed write operation.
 Default value is 'true'.
 -Pfile=<file> The output file to which the data product is written.
 -PformatName=<string> The name of the output file format.
 Default value is 'BEAM-DIMAP'.
 -PwriteEntireTileRows=<boolean> If true, the write operation waits until an entire tile row is
computed.
 Default value is 'true'.

Graph XML Format:
 <graph id="someGraphId">
 <version>1.0</version>
 <node id="someNodeId">
 <operator>Write</operator>
 <sources>
 <source>${source}</source>
 </sources>
 <parameters>
 <file>file</file>
 <formatName>string</formatName>
 <deleteOutputOnFailure>boolean</deleteOutputOnFailure>
 <writeEntireTileRows>boolean</writeEntireTileRows>
 <clearCacheAfterRowWrite>boolean</clearCacheAfterRowWrite>
 </parameters>
 </node>
 </graph>

The Write operator help shows that you can use the parameters –Pfile to specify an output file name and
–Pformat to specify the file format.

To run gpt on an operator type:
gpt <OperatorName> [options] [<source-file-1> <source-file-2> ...]

To actually run an operator using the GPT, it is necessary to indicate the path to the source product(s), to
the target product and to other operator-specific parameters which might be mandatory or specific.

To use the Write operator to write a product to HDF5 format:

gpt Write –Pfile=~/myoutput/myfile.h5 –Pformat=HDF5 pathToInputProductFile

SNAP Command Line Tutorial

8

The gpt can be run on several products in batch by using it within scripts and replacing the input files and
output files.

Calling GPT with a Graph
Rather than calling each operator and specifying all its parameters, it is more convenient to pass the
required settings in an xml-encoded graph file. It will then suffice to just pass the graph as parameter to the
gpt.

To run gpt on a graph file type:
gpt <GraphFile.xml> [options] [<source-file-1> <source-file-2> ...]

Creating a Graph File
You can create your own graph files using a text editor.

The basic format of a graph XML file is:

 <graph id="someGraphId">
 <version>1.0</version>
 <node id="someNodeId">
 <operator>OperatorName</operator>
 <sources>

<sourceProducts>${sourceProducts}</sourceProducts>
 </sources>
 <parameters>

 </parameters>
 </node>
 </graph>

You can use the operator help (gpt operatorName –h) to get a listing of the configuration of operator
parameters within a graph.

For example, as shown above, the graph configuration for Calibration is:

<graph id="someGraphId">
 <version>1.0</version>
 <node id="someNodeId">
 <operator>Calibration</operator>
 <sources>
 <source>${source}</source>
 </sources>
 <parameters>
 <sourceBands></sourceBands>
 <auxFile>string</auxFile>
 <externalAuxFile>file</externalAuxFile>
 <outputImageInComplex>boolean</outputImageInComplex>
 <outputImageScaleInDb>boolean</outputImageScaleInDb>
 <createGammaBand>boolean</createGammaBand>
 <createBetaBand>boolean</createBetaBand>
 <selectedPolarisations>string,string,string,...</selectedPolarisations>
 <outputSigmaBand>boolean</outputSigmaBand>
 <outputGammaBand>boolean</outputGammaBand>
 <outputBetaBand>boolean</outputBetaBand>

SNAP Command Line Tutorial

9

 <outputDNBand>boolean</outputDNBand>
 </parameters>
 </node>
 </graph>

Replace the parameter data types (string, boolean, etc) with actual values.
Save the graph to an XML text file calibrateGraph.xml.

Note that in the list of available operators a Read and a Write operator exists. These are not needed
because GPF will add those operators to the graph on its own for this simple case. However, they could be
specified in more complex graphs.

To run this graph with gpt and write the output product to a specific path, type:

gpt calibrateGraph.xml -t ~/out/output.dim

Using a Graph Created by the GraphBuilder

The GraphBuilder in SNAP Desktop could be used to construct
more complicated graphs with interconnected operators.

See the Sentinel-1 Toolbox Graph Building tutorial to learn more
about how to drop in operators, connect them, and specify
parameters.

When you save a graph, the parameters you have specified for
the current data product(s) are also saved to the graph file. To
reuse the graph from the command line using gpt, you may need
to open the graph XML file in a text editor and remove or replace
the value for some parameters in order to make the graph generic
for any input product.

An example graph can be found in the .snap/graphs folder. The
.snap folder is found in your home directory in Linux or in
c:\users\username\.snap in Windows.

You could insert variables in the form ${variableName} in place
of a parameter value. You can then replace the variableName
with a value at the command line. For example, if a parameter for
a file included the variable for ${myFilename}

<parameters>
 <file>${myFilename}</file>
</parameters>

gpt mygraph.xml –PmyFilename=pathToMyFile

Batch Processing Examples
The following are some examples which can be done with Windows batch files.

https://step.esa.int/main/doc/tutorials/

SNAP Command Line Tutorial

10

Calibration
For all envisat products in folder c:\ASAR run gpt Calibration and produce the output in the folder
c:\output

for /r "c:\ASAR" %%X in (*.N1) do (gpt Calibration "%%X" -t "C:\output\%%~nX.dim")

Terrain Correction
For all dimap products in folder c:\data run the graph TC_Graph.xml and output to c:\output with the same
name as the input file.

for /r C:\data %%X in (*.dim) do (gpt TC_Graph.xml -Pfile="%%X"
-Ptarget="C:\output\%%~nX.dim")

