

Sentinel-1 Toolbox

SAR Basics Tutorial

Issued March 2015 Updated November 2019 Updated January 2021 Updated March 2021

> Andreas Braun Luis Veci

SKYWATCH

SAR Basics Tutorial

The goal of this tutorial is to provide novice and experienced remote sensing users with step-by-step instructions on working with SAR data with the Sentinel-1 Toolbox.

For further details on operator parameters and algorithmic descriptions, please refer to the online help available within the software.

In this tutorial you will calibrate, multilook, speckle filter, and terrain correct SAR data products.

Sample Data

For this tutorial, we will use the Vancouver Ultra Fine SLC dataset. Vancouver in British Columbia is the third largest metropolitan area in Canada located on the Pacific coast. The file is provided by the Canadian Space Agency and can be downloaded <u>here</u>. More sample data by CSA: <u>https://www.asc-csa.gc.ca/eng/open-data/access-the-data.asp</u>

Open a Product

Step 1 - Open a product: Use the **Open Product** button in the top toolbar and browse for the location of the **Vancouver Fine Quad RADARSAT-2** product.

Select the **product.xml** file and press **Open Product** (Figure 1. If your product is contained within a zip file, the Toolbox will also be able to open the product simply by selecting the zip file. If you encounter problems with opening data, select a specific reader under *File > Import > SAR sensors*.

🞇 SNAP - Open	Product				×
Look in:	RS2_0K77	586_PK688502_DK618137_U18_20130822_020935_HH_SLC ~	🗈 💣 匪	-	
Zuletzt verw	🔁 LI-11525-1	-		<u>A</u> dvanced	
Desktop	IutBeta.xn	l -			
Dokumente	IutSigma. product.k	nl nl			
Dieser PC					
Netzwerk					
	File <u>n</u> ame:	product.xml			
	Files of type:	All Files		~	[

Figure 1: Open the product.xml

In the *Products View* you will see the opened product which consists of Metadata, Vector Data, Tie-Point Grids, Quicklooks and Bands (which contains the actual raster data, organized by polarization).

Double-click on the **Intensity_HH** band to view the raster data. The product is a RADARSAT-2 Single Look Complex (SLC) data product which means that it is stored and displayed in slant geometry (as measured by the side-looking sensor) and has not been multi-looked. Accordingly, the data can appear stretched in the azimuth direction (y axis) and contain a lot of noise. Images acquired in an ascending orbit will be displayed upside down and inverted, but this is corrected in the last processing step.

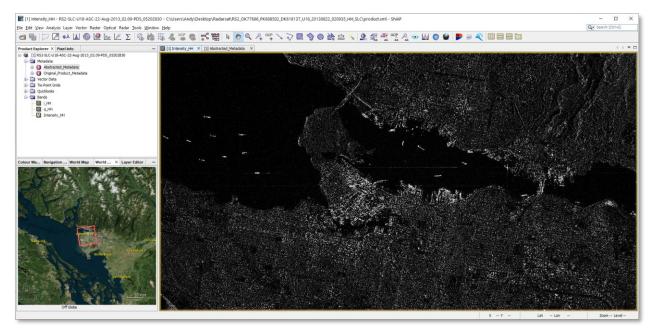


Figure 2: Product view

You can use the *World View* or *World Map* (to see its full extent on a base map) or open the *Quicklook* for a preview of the dataset in an RGB color representation. If you miss any items in your user interface, you can activate them in the menu under *View* and *Tool Windows*.

You can find information on the product under Metadata > Abstracted Metadata (Figure 3). As shown, the image was acquired in ascending orbit at HH polarization and contains complex (i+q) information.

[1] Intensity_HH × [1] Abstracted_Metadata ×					• • •
ame	Value	Туре	Unit	Description	
PRODUCT	RS2-SLC-U18-ASC-22-Aug-2013_02.09-PDS_05202830	ascii		Product name	
PRODUCT_TYPE	SLC	asci		Product type	
SPH_DESCRIPTOR	Ultrafine	ascii		Description	
MISSION	R52	ascii		Satellite mission	
ACQUISITION_MODE	Ultrafine	ascli		Acquisition mode	
antenna_pointing	right	asci		Right or left facing	
BEAMS	U18	ascii		Beams used	
SWATH	·	ascli		Swath name	
PROC_TIME	23-JUN-2016 22:47:02.000000	uint32	utc	Processed time	
Processing_system_identifier	GSS-CAPPS SAR 1.3	asci		Processing system identifier	
orbit_cycle	99999	int32		Cyde	
REL_ORBIT	99999	int32		Track	
ABS_ORBIT	29691	int32		Orbit	
STATE_VECTOR_TIME	22-AUG-2013 02:09:36.751340	uint32	utc	Time of orbit state vector	
/ECTOR_SOURCE		ascli		State vector source	
incidence_near	42.944322883243295	float64	deg		
incidence_far	44.01216152184446	float64	deg		
slice_num	99999	int32		Slice number	
data_take_id	99999	int32		Data take identifier	
first_line_time	22-AUG-2013 02:09:40.125644	uint32	utc	First zero doppler azimuth time	
last_line_time	22-AUG-2013 02:09:36.751340	uint32	utc	Last zero doppler azimuth time	
first_near_lat	49.325279235839844	float64	deg		
first_near_long	-123.26271821444529	float64	deg		
first_far_lat	49.35631561279297	float64	deg		
first_far_long	-122.96407305401661	float64	deg		
last_near_lat	49.12752914428711	float64	deg		
ast_near_long	-123.21341803171694	float64	deg		
last_far_lat	49.1585807800293	float64	deg		
last_far_long	-122.91598552105322	float64	deg		
PASS	ASCENDING	asci		ASCENDING or DESCENDING	
SAMPLE_TYPE	COMPLEX	asci		DETECTED or COMPLEX	

Figure 3: Metadata view

SKYWATCH

Calibrating the Data

To properly work with the SAR data, the data should first be calibrated. This is especially true when preparing data for mosaicking where you could have several data products at different incidence angles and relative levels of brightness.

Radiometric calibration converts backscatter intensity as received by the sensor to the normalized radar cross section (Sigma0) as a calibrated measure taking into account the global incidence angle of the image and other sensor-specific characteristics. This makes radar images of different dates, sensors, or imaging geometries comparable.

The corrections that get applied during calibration are mission-specific, therefore the software will automatically determine what kind of input product is opened and what corrections need to be applied based on the product's metadata. Calibration is essential for quantitative use of SAR data.

Step 2 - Calibrate the product: From the Radar menu, go to Radiometric and select Calibrate.

The source product should be the imported product, the target product will be the new file you will create. Also select the directory in which the target product will be saved (here: $C:\Temp$)

Calibration X	Calibration ×
File Help	File Help
I/O Parameters Processing Parameters	I/O Parameters Processing Parameters
Source Product source: [1] RS2-SLC-U18-ASC-22-Aug-2013_02.09-PDS_05202830 v	Source Bands: q_HH Intensity_HH
Target Product Name: RS2-SLC-U18-ASC-22-Aug-2013_02.09-PDS_05202830_Cal Save as: BEAM-DIMAP Directory: C:\Temp C:\Temp Open in SNAP	ENVISAT Auxiliary File: Save as complex output Save in dB Create gamma0 virtual band Create beta0 virtual band
<u>R</u> un <u>O</u> lose	<u>R</u> un <u>C</u> lose

Figure 4: Radiometric calibration

If you don't select any source bands, then the calibration operator will automatically select all real and imaginary (i, q) bands. Make sure that "Save as complex output" is not selected, so that the calibration operator will produce a single Sigma0 band per real and imaginary pair. In case of interferometric or polarimetric analyses, you should select "Save as complex output".

Figure 5: Calibrated product

SKYWATCH

Multilooking

Multilook processing is an **optional step** and can be used to produce a product with nominal image pixel size.

Multiple looks may be generated by averaging over range and/or azimuth resolution cells improving radiometric resolution but degrading spatial resolution. As a result, the image will have less noise and approximate square pixel spacing after being converted from slant range to ground range.

Step 3 - Multilook the data: From the Radar menu, select SAR Utilities and then Multilooking.

Single Look Complex Range Looks: 1 Azimuth Looks: 1 Range Spacing: 7.8 m Azimuth Spacing: 4.0 m

Figure 6: Multilooking an SLC Product

In the **Multilook** dialog, select the calibrated data as an input and the **Sigma0_HH** band to only produce an output for this band (Figure 7).

Specify the number of range looks while the number of azimuth looks is computed based on the ground range spacing and the azimuth spacing.

In this case, the azimuth and ground resolution is similar so that 2 range looks will also require 2 azimuth looks (resulting in a spatial resolution of around 4 m), but depending on the incidence angle, this ratio can be larger (e.g. 1 range looks require 8 azimuth looks). In the end, the data has square pixels. As a side effect, speckle is reduced.

Press Run to begin processing.

When complete, a new product will be created and will be available in the **Products View**.

In the new product, open the **Sigma0_HH** band (Figure 8). Depending on the ratio of range and azimuth resolution before multilooking image my now look more proportional; however, it still contains a lot of speckle.

SKYWATCH

Multilooking		×	(
File Help			
I/O Parameters Processin	ng Parameters		
Source Bands:	Sigma0_HH		
GR Square Pixel	Independent Looks	1	
Number of Range Looks:	2		
Number of Azimuth Looks:	2		
Mean GR Square Pixel:	3.9940364		
Output Intensity			
	Note: Detection for complex data is done without resampling.		
		Run Close	

Figure 7: Multilooking of the calibrated data

Figure 8: HH polarization before (left) and after multilooking (right)

Speckle Reduction

Speckle is caused by random constructive and destructive interference resulting in salt and pepper noise throughout the image.

Speckle filters can be applied to the data to reduce the amount of speckle at the cost of blurred features or reduced resolution. Extensive reviews and comparisons of speckle filters are provided by <u>Dong et al.</u> (2000), <u>Touzi (2002)</u>, and <u>Lee et al. (2009)</u>. The choice for a best filter often depends on the type of data, its spatial resolution, the degree of inherent speckle, and the application.

Step 4 - Speckle Filtering: Select the multilooked product and then select **Speckle Filtering/Single Product Speckle Filter** from the **Radar** menu.

From the **Speckle Filtering** dialog, select the multilooked product as input. In the second tab select the **Refined Lee** speckle filter. The Refined Lee filter averages the image while preserving edges. It has no parameters to set, while others require the definition of a kernel size and other parameters. The effect of different filters and their parameter configurations has to be explored by careful comparison to find the best solution for the respective case.

Press Run to process.

Single Product Speckle Filter	×
File Help	
I/O Parameters Processing Parameters	
Sigma0_VH	1
Source Bands:	
Filter: Refined Lee	
	1
<u>R</u> un <u>C</u> lose	

Figure 9: Speckle filtering

SKYW\TCH

Open the newly created speckle filtered product. You can use the Split Window tools $\square \square \square \square$ to compare different products (Figure 10).

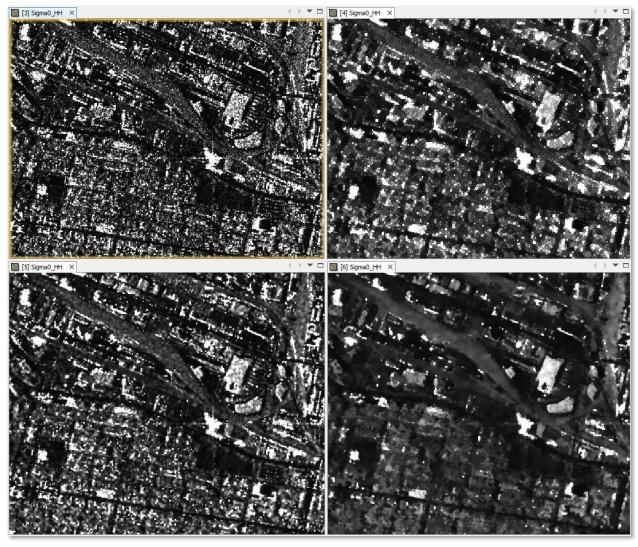


Figure 10: Sigma0_HH before speckle filtering (top left), after Refined Lee filter (top right), after IDAN filter (bottom left), and after Frost filter (bottom right)

The final processing step which we will perform on this product will be terrain correction. You can select the filter product which you like most.

SKYWATCH

Terrain Correction

Terrain Correction will geocode the image by correcting SAR geometric distortions using a digital elevation model (DEM) and producing a map projected product.

Geocoding converts an image from slant range or ground range geometry into a map coordinate system. Terrain geocoding involves using a Digital Elevation Model (DEM) to correct for inherent geometric distortions, such as foreshortening, layover and shadow (Figure 11). More information on these effects is given in the <u>ESA radar course materials</u>.

Foreshortening

- The period of time a slope is illuminated by the transmitted pulse of the radar energy determines the length of the slope on radar imagery.
- This results in shortening of a terrain slope on radar imagery in all cases except when the local angle of incidence (θ) is equal to 90°.

Layover

- When the top of the terrain slope is closer to the radar platform than the bottom the former will be recorded sooner than the latter.
- The sequence at which the points along the terrain are imaged produces an image that appears inverted.
- Radar layover is dependent on the difference in slant range distance between the top and bottom of the feature.

Shadow

• The back-slope is obscured from the imaging beam causing no return area or radar shadow.

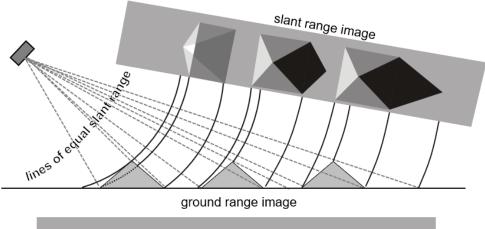


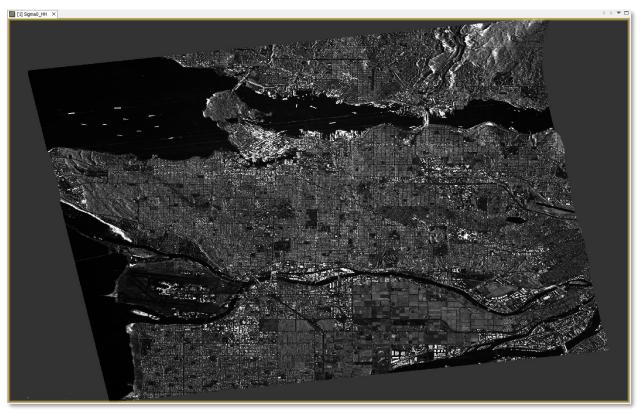
Figure 11: Geometric distortions in radar images (Braun 2019)

Step 5 - Terrain Correction: Select the speckle filtered product and then select **Range-Doppler Terrain Correction** from the **SAR Processing/Geometric** menu.

By default, the terrain correction will use the SRTM 3Sec DEM (90 m pixel spacing). You can also select a DEM of higher resolution (*SRTM 1Sec HGT (AutoDownlad)* 30 m pixel spacing). The software will automatically determine the DEM tiles needed and download them automatically from internet servers.

The default output map projection is Geographic (based on Latitude/Longitude), but you can also select a UTM zone.

If you don't want ocean areas removed (based on the DEM values), disable "Mask areas without elevation"


Press Run to process.

Range Doppler Terrain Correction ×					
File Help					
I/O Parameters Processing Parameters					
Source Bands:	Sigma0_HH				
Digital Elevation Model:	SRTM 1Sec HGT (Auto Download)				
DEM Resampling Method:	BILINEAR_INTERPOLATION ~				
Image Resampling Method:	BILINEAR_INTERPOLATION ~				
Source GR Pixel Spacings (az x rg): Pixel Spacing (m):	4.12(m) x 3.87(m) 4.12				
Pixel Spacing (deg):	3.701058970572429E-5				
Map Projection:	WGS84(DD)				
Mask out areas without elevation	Output complex data				
Selected source band	DEM Latitude & Longitude				
Incidence angle from ellipsoid	Local incidence angle Projected local incidence angle				
Apply radiometric normalization					
Save Sigma0 band	Use projected local incidence angle from DEM \sim				
Save Gamma0 band	Use projected local incidence angle from DEM $\qquad \qquad \bigtriangledown$				
Save Beta0 band					
Auxiliary File (ASAR only):	Latest Auxiliary File \lor				
	<u>R</u> un <u>C</u> lose				

Figure 12: Range Doppler Terrain Correction

SKYWATCH

Open the terrain corrected product. You will see that the terrain correction has worked when the image is rotated (facing north) and the image boundaries are stretched in mountainous areas (Figure 12).

Terrain Corrected Image

Conversion to dB scale

As Sigma0 values show the backscatter intensity in linear scale, the majority is dark while only a small proportion is bright. This is not ideal in a statistical sense and can make image interpretation difficult, because values of smaller than 1 have similar grey values.

To achieve a normal distribution of values, the log function is applied to the radar image. It translates the pixel values into a logarithmic scale and yields in higher contrasts, because the bright values are shifted towards the mean while dark values become stretched over a wider color range (**Fehler! Verweisquelle konnte nicht gefunden werden.**, bottom).

The value range of calibrated dB data is -35 to +10 dB

Step 5 – Conversion to dB scale: To view the image in decibel scaling, right-click on the terrain corrected **Sigma_HH** band and select **Linear to/from dB** to convert the data using a virtual band (Figure 13 and Figure 14).

Product Explorer ×	Pixel Info		_
[1] RS2-SLC-U18 [1] RS2-SLC-U18 [1] Metadata [1] Vector Data [1] Vector Data [1] Metadata	-ASC-22-Aug-	2013_02.09-PDS_05202830_(Cal_ML_IDAN_TC
Sigma0-	Add Elev Band Ma Convert Filtered	Band	
	Linear to	/from dB	
	Open Im	ransect Pixels nage Window d Cover Band	
	Cut	Ctrl+X	
	Сору	Ctrl+C	
	Paste	Ctrl+V	
	Delete	Delete	
	Properti	es	

Figure 13: Conversion to dB scale

A new virtual band will be created with the expression 10*log10(Sigma_HH). Double-click on the new **Sigma_HH_dB** band to open it (Figure 15).

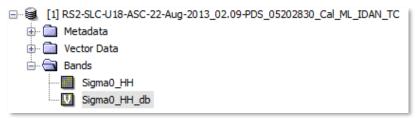


Figure 14: Log-scaled backscatter intensity

SKYWATCH

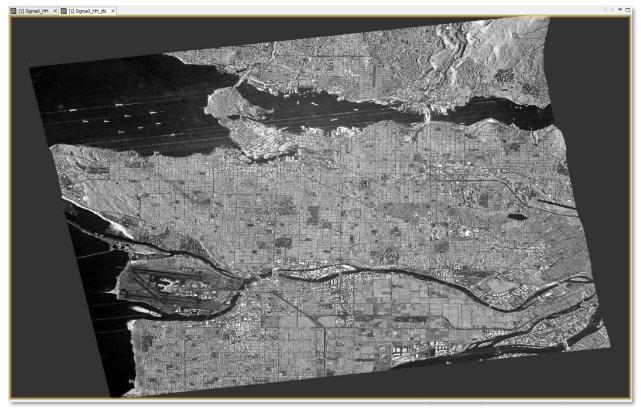


Figure 15: Sigma0 in dB scale

You will see that the values of calibrated dB data roughly range between -25 and +5 dB (Figure 16).

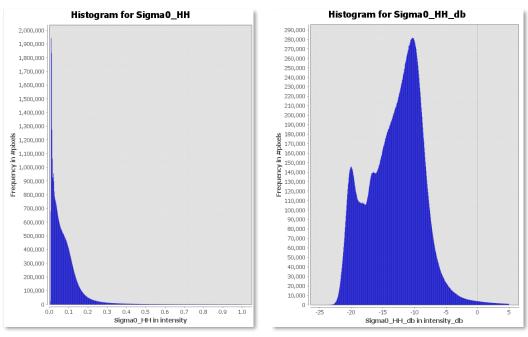


Figure 16: Histogram before (left) and after conversion to dB scale (right)

For more tutorials visit the Sentinel Toolboxes website

http://step.esa.int/main/doc/tutorials/

Send comments to the SNAP Forum

http://forum.step.esa.int/